DP1-B-201-2-SUKO25

$$
\therefore \supset M C R
$$

ELF NORGE A/S DRILLING PLATFORM NO. 1 FLOTATION STUDY

APRIL 231975

PROJECT 2181

This report investigates the re-flotation of the jacket of Drilling Platform No.l after the installation of eight pairs of $62^{\prime \prime} \varnothing$ buoyancy tanks, four pairs on A side and four pairs on B side.

The new tanks are each 110 ft in length and are supplementary to the existing damaged $62^{\prime \prime} \phi$ and $100 " \varnothing$ buoyancy tanks. The length of 110 ft was necessary to achieve a minimum mudline clearance of 2 m in a water depth of 96 m .

Two conditions have been considered, namely:-
i) With the above mentioned new tanks, and legs B2 and B3 each containing 200 kips of water.
ii) With the above mentioned tanks, and legs B2 and B3 each containing 125 kips of water (i.e. deballast 75 kips from each leg).

An intermediate condition has also been investigated i.e. the deballasting of all new buoyancy tanks, corner legs and $100 " \phi$ tanks but only partially deballasting the existing $62 " \emptyset$ tanks.

The purpose of this was to establish a condition in which it would be possible to work on the jacket without being in the splash zone.

The appendix contains the computer print-outs for the conditions Investigated.

Certain ε ssumptions were made about the condition of the jacket during the upend sequence.
1.1 That the following legs were ballasted:

(i)	Al	-240 kips
(ii)	A4	-300 kips
(iii)	B4	-200 kips

1.2 That the following members were damaged: (i) B3 - containing 200 kips of water
(ii) 62" \varnothing buoyancy tanks were collapsed from 130 fit down to the bottom and that the remaining intact portion of the tanks was the top 55 ft .
(iii) 100 " \varnothing buoyancy tanks were collapsed and the remaining intact portion was the top 60 ft.
1.3 That the jacket had an angle of heel in the long axis of approximately 11° (column line 1 low).

This was only from visual observations and could be anywhere from $0^{\circ}-11^{\circ}$.

During the initial attempts at re-flotation the jacket became buoyant after 15 of the 62 " \varnothing tanks had been evacuated to the 130 ft level, the last. one being full of water. From this observation the approximate weight of the jacket was derived.

When in this condition some of the jacket was clear of the water, say approximately 70 kips .

Weight of jacket and ballast $=16460$ kips
Weight of ballast
$=740 \mathrm{kips}$
Weight of jacket $\quad=15720$ kips say 15700 kips

On the basis of these foregoing assumptions the attitude of the jacket during re flotation was considered for an initial angle of transverse trim of 11°.

Consider the condition when the jacket just becomes submerged.

Vertical centre of buoyancy

Item		ZCB	Xmmt
Jacket intact	19211	192.94	3706570
B3	200	127.00	25400
$62^{\prime \prime} \phi$	2960	230.00	680800
$100^{\prime \prime} \phi$	980	222.00	217560
	15071	184.70	2782810

Centre of gravity in the X and Z directions

Item	Wt	ZCG	Zmmt	XCG	Xmmt
Jacket	15700	178.0	2794600	$5.0(1)$	78500
A1	240	42.38	12714	$100.0(1)$	24000
A4	300	35.0	8400	$100.0(4)$	30000
B4	200	30.0	6000	$100.0(4)$	20000
	16440	171.60	2821714	$3.19(1)$	52500

Vertical separation of $B \& G$ in this condition (i.e. just as jacket becomes submerged) $=13.10 \mathrm{ft}$.

Horizontal separation of B \& G causing a transverse angle of heel is therefore $13.10 \tan 11^{\circ}=2.55 \mathrm{f}^{\circ} \mathrm{t}$.

In this initial condition the centre of buoyancy in the X direction is $3.19-2.55=0.64 \mathrm{ft}$. off the centre line towards column line 1.
2.1 New tanks installed, B2 and B3 each containing 200 kips of water.
1.1 Jacket Weight

The damaged portions of the existing 62" \varnothing buoyancy tanks have been removed giving a weight saving of $864 \times \frac{50}{190}=230 \mathrm{kips}$.
The new tanks have a total weight of 602 kips therefore the new weight of the jacket is

$$
15700-230+602=16072 \mathrm{kips}
$$

-2-1.2 Jacket buoyancy
Intact
Jacket intact $=19211 \mathrm{kips} \quad 62^{\prime \prime} \varnothing$ tanks $=4166$ 100 " ϕ tanks $=980$ Total lost $=5146 \mathrm{kips}$

Net available buoyancy $=14065 \mathrm{kips}$.

2-1.3 The operation should begin with the deballasting of the four corner legs to leave 750 kips in side A and 150 kips in side B.

At this stage the total jacket weight is made up as follows.

Steel	$=16072$	
Ballast in Al \& A4	$=$	750
Ballast in B1 \& B4	$=$	150
Water in B2 \& B3	$=$	400
Total jacket weight	$\equiv 17372$ kips	

Resultant weight on the bottom is 3307 kips.

2-1.4 Evacuate all the new $62^{\prime \prime} \varnothing$ buoyancy tanks. Buoyancy available from the structure $=14065$ Buoyancy available from the new tanks $=2362$

Total available buoyancy $\quad=16427 \mathrm{kips}$
Resultant weight on the bottom is 945 kips.

2-1.5 Evacuate the two 100 " \varnothing buoyancy tanks on side A.

$$
\begin{aligned}
\text { Total available buoyancy from } 1.4 & =16427 \\
\text { Buoyancy from } 100^{\prime \prime} \varnothing \text { tanks } & =766
\end{aligned}
$$

Total available buoyancy $\quad=17193 \mathrm{kips}$
Resultant weight on the bottom is 179 kips.

2-1.6 Introduce a pressure of 3 bars into each of the existing $62 " \phi$ buoyancy tanks.
Total available buoyancy from $1.5=17193$
Buoyancy from existing 62 " \varnothing tanks $=2100$
Total available buoyancy
$=19293 \mathrm{kips}$
Resultant excess of buoyancy-is 1921 kips.

At this stage the jacket will be floating with a draft of 325 ft i.e. a mudline clearance in 104 m water depth of approximately 16 ft .

2-1.7 Evacuate the existing $62^{\prime \prime} \varnothing$ buoyancy tanks completel:
Recent data from divers has indicated that the available buoyancy of the existing $62^{\prime \prime} \varnothing$ tanks is in excess of 3000 kips.

Total available buoyancy from 1.6 $=19293$
Remaining buoyancy from existing $62^{\prime \prime} \varnothing$ tanks
$=918$
Total available buoyancy
$=20211 \mathrm{kips}$
Resultant excess of buoyancy is 2839 kips.

At this stage the jacket will be floating with a draft of 307.4 ft i.e. a mudline clearance on final location (96 m W.D.) of approximately 7.50 ft.
c. 2 New tanks installed, B2 and B3 each containing 125 kips of water

The whole de-ballasting sequence will be as case 1 but on completion of de-ballasting the B 2 and B 3 legs will be de-ballasted to leave only 125 kips in each.

Total available buoyancy from $1.7=20211$
Buoyancy gained from B2 \& B3
Total available buoyancy

Resultant excess of buoyancy is 2989 kips .

At this stage the jacket will be floating at a draft of .. 300 ft . i.e. a mudline clearance on final location (96 m W.D.) of approximately 14 ft .
3.0 BALLAST DISTRIBUTION

In order to achieve a zero, or near zero, angle of the jacket in the long axis, the jacket legs must be unevenly ballasted.

The new buoyancy tanks are to be distributed evenly about the centre of the jacket.

CG in X direction $=15700 \times 5.0=4.52$ ft towards 17372
$C B$ in X direction $=0.64 \mathrm{ft}$ towards col. line 1
Sepa ${ }_{i}$ ation $B G \quad=3.88 \mathrm{ft}$
$\begin{aligned} \text { Ballast to be re-distributed } & =\frac{3.88 \times 17372}{200} \\ & =337 \mathrm{kips}\end{aligned}$

Therefore the ballast distribution in each of the two cases considered should be as follows.

$$
\begin{array}{ll}
\text { A } 1=75 \text { kips } & \text { A } 4=700 \text { kips } \\
\text { B } 1=75 \text { kips } & \text { B } 4=75 \text { kips }
\end{array}
$$

This ballast distribution will result in the jacket floating approximately level in the long axis.

4.1 Final Flotation

Attached are two computer printouts showing the results of a flotation analysis for the two cases under consideration. The results of these flotation analyses are summarised below.
Run 1

$$
\begin{array}{ll}
\text { Angle of flotation } & =3.40^{\circ} \text { (A side high) } \\
\text { Draft of jacket } & =307.4 \mathrm{ft} \\
\text { Mudline clearance } & =7.50 \mathrm{ft}(\text { in } 96 \mathrm{~m} \text { water depth }) \\
\begin{array}{l}
\text { Vertical separation of }
\end{array}=5.37 \mathrm{ft} . \\
\text { centres of buoyancy } \\
\text { and gravity. }
\end{array}
$$

Run 2

$$
\begin{aligned}
& \text { Angle of flotation }=0.50^{\circ} \text { (A side high) } \\
& \text { Draft of jacket }=300 \mathrm{ft} . \\
& \text { Mudline clearance }=14.0 \mathrm{ft}(\text { in } 96 \mathrm{~m} \text { water depth) } \\
& \text { Vertical separation of }=4.74 \mathrm{ft} . \\
& \text { centres of buoyancy } \\
& \text { and gravity. }
\end{aligned}
$$

The angle of flotation has a large effect on the final mudine clearance (1° angle reduces the mudline clearance by approximately 1.20 ft) and it is therefore desirable to evacuate the B2 and B3 legs if possible to reduce the angle of flotation to a minimum.

4.2 Intermediate Flotation

In this case the corner legs, 100 " \varnothing buoyancy tanks and new 62 " \varnothing buoyancy tanks have been evacuated. In addition the existing 62 " \varnothing buoyancy tanks have been pressurised to 3 bars each.

The computer printout of the flotation analysis for this intermediate condition is attached and the results are summarised below.

4.2 Intermediate Flotation

Run 3

Angle of flotation	$=4.0^{\circ}(\mathrm{A}$ side high)
Draft of jacket	$=307.4 . \mathrm{ft}$
Mudline Clearance	$=16.0 \mathrm{ft}$ (on present
Vertical separation of centres of buoyancy and gravity.	$=9.18 \mathrm{ft}$

APPENDIX

REMARKS:
 ELF NORGE A/S OPI SERIES M REFLOTATBON ANALYSIS

1662° DIA BUDYANGY TANKS Llofy LiNG AOOED
RUN 1 E2 a B3 EACH CONTANINE 200kPS WATES
JACKEI PROPERTIES

GISPL	$=$	20212.43	(KIPS
YCE	=	80.29	(FT)
2Cb	$=$	199.85	(F5)
ExCESS	$=$	14	(4

$14(\angle)$

WELGHI=	17372.00	(KIPS
YCG	85.03	(H T)
2CG	172.19	(FI)
YH(1)	34.45	(FT)
2H11)	351.50	(H)
YH2\%	81.83	(FI)
2H(2)	407.50	(FT)
Yri(3)	124.17	(FT)
2mi3)	331.30	(FT).

COURDINATES GF YUINT THRUUGH WHICH
COURDINATES GF YUINT THRUUGH WHICH
JNISIAL WATERLINE GUES AKE.
Y-GIRECTIGN: 160.00 FT
Z-ULRELTLLN: 300.00 IFT

H(2) $=$
7nic3 $=$
331.30 (FT).

MCDERMOTT-HUDSON \qquad
clf Nurge afs

2181

CALCULAEION OF HOURLOAU OK RIGHEING MOMEATS

PAGE
PAGE
O/04175
O/04175

GALCULATRON OF HOOKLOAD UK RIGHTJNG MOMENYS

REMARKS:
ELF NORGE A/S DPL SERIES M REFLOTATILN ANALYSIS
10 62\% DIA BUOYANCY TANKS LIOF LGNG ADOED
EUN 3 - INTERMEDIATE FLOTATION POSITION
JACKET PROPERTIES

