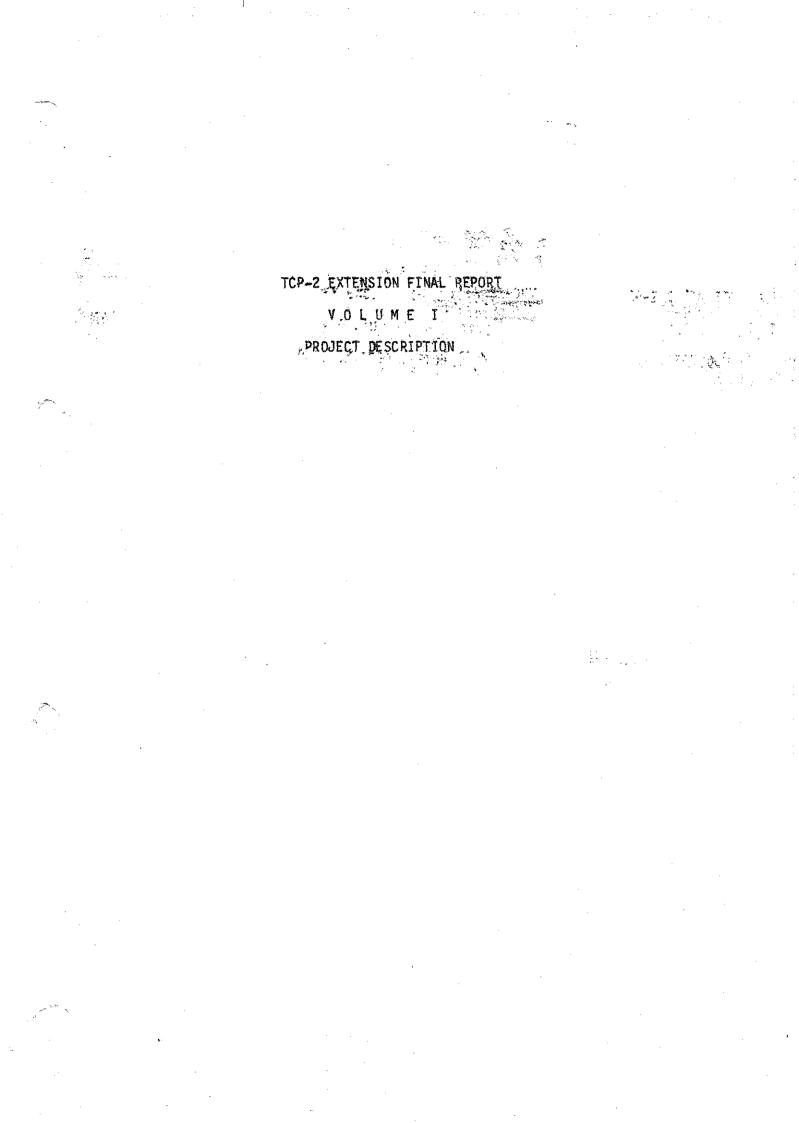


elf aquitaine norge a/s


FRIGG FIELD — TCP2 EXTENSION

FINAL REPORT VOLUME 1

PROJECT DESCRIPTION

STAVANGER

FEBRUARY 1984

TCP-2 EXTENSION FINAL REPORT GENERAL INDEX

TCP2 EXTENSION FINAL REPORT

GENERAL INDEX FOR ALL VOLUMES

VOL I - PROJECT DESCRIPTION

- 1 GENERAL DESCRIPTION OF TCP-2 EXTENSION PROJECT
 - 1.1 INTRODUCTION
 - 1.2 FIELDS LOCATION
 - 1.3 EXTENSION LOCATION
 - 1.4 PROCESS DESCRIPTION
 - 1.5 DESCRIPTION OF PROCESS SAFETY SYSTEMS
 - 1.6 DESCRIPTION OF GAS RELIEF SYSTEM
 - 1.7 GENERAL DRAWING LIST
- 2 PRINCIPLES OF ENGINEERING DESIGN
 - 2.1 ENVIRONMENTAL CONDITIONS
 - 2.2 DOCUMENT NUMBERING, DISTRIBUTION AND ROUTING
 - 2.3 ENGINEERING DESIGN
- 3 NEF ELECTRICAL POWER SUPPLY
 - 3.1 GENERAL DESCRIPTION OF NEF POWER SUPPLY INSTALLATION
 - 3.2 DESIGN PHILOSOPHY
- **4** APPENDICES
 - APPENDIX 1 NEF Gas Composition, Reservoir Pressure and Production Profile
 - APPENDIX 2. ODIN Gas Composition, Reservoir Pressure and Production Profile
 - APPENDIX 3 Process Flow Diagnams
 - APPENDIX 4 Safety Analysis Table (SAT)
 - APPENDIX 5 Safety Analysis Function Evaluation Chart

APPENDIX 6 - Functional Description of the ESD System
APPENDIX 7 - Description of Process Safety System
APPENDIX 8 - Pressure Drop Calculations for LP Vent System
APPENDIX 9 - Back Pressure Calculations - LT Relief System
- HP Relief System
APPENDIX 10 - Calculation of Temperature Downstream of the Blow Down Valves
APPENDIX 11 - Fire Protection - Liquid Vapourization
- Gas Expansion
APPENDIX 12 - Back Pressure Calculations - LP Vent System to Glycol Surge Drums CV 17

APPENDIX 13 - Data Sheets for Safety Relief Valves

VOLUME II - PROJECT DEVELOPMENT

- 1 OVERALL PROJECT DEVELOPMENT
 - 1.1 SCOPE OF WORK
 - 1.2 ORGANIZATION
 - 1.3 PLANNING AND EXECUTION
 - 1.4 QUALITY ASSURANCE PRINCIPLES
 - 1.5 INSURANCE
 - 1.6 FILING KEY
- 2 ENGINEERING
 - 2.1 GENERAL
 - 2.2 ORGANIZATION
 - 2.3 QUALITY ASSURANCE (QA) / OUALITY CONTROL (QC)
 - 2.4 PLANNING AND PROGRESS
- 2.5 ENGINEERING AND DISCIPLINE REPORT
- **3 PROCUREMENT**
 - 3.1 GENERAL
 - 3.2 QUALITY ASSURANCE (QA) / QUALITY CONTROL (QC)
 - 3.3 PURCHASING
 - 3.4 INSPECTION / EXPEDITING
 - 3.5 TRANSPORTATION / CUSTOMS
 - 3.6 MATERIALS HANDLING
 - 3.7 SURPLUS
 - 3.8 VENDOR DOCUMENTATION
 - 3.9 KEY FIGURES

- 4 CONSTRUCTION ON YARD
 - 4.1 GENERAL
 - 4.2 ORGANIZATION
 - 4.3 QUALITY ASSURANCE / QUALITY CONTROL (QA/QC)
 - 4.4 PLANNING AND PROGRESS
 - 4.5 WORK REPORT
 - 4.6 KEY FIGURES
 - 4.7 FINAL ACCEPTANCE DOCUMENTATION
- 5 PRE HOOK UP
 - 5.1 GERERAL
 - 5.2 RISERS EXTENSION IN COLUMN 5
 - 5.3 WORKS ON TCP-2
 - 5.4 WORKS ON DP-2
 - 5.5 KEY FIGURES
- 6 TRANSPORTATION AND LIFTING
 - 6.1 GENERAL
 - 6.2 TRANSPORTATION
 - 6.3 LIFTING
- 7 HOOK UP
 - 7.1 GENERAL
 - 7.2 HOOK UP PREPARATION
 - 7.3 OUALITY ASSURANCE / OUALITY CONTROL
 - 7.4 PLANNING AND PROGRESS
 - 7.5 HOOK UP PREPARATION
 - 7.6 MOBILIZATION
 - 7.7 EXECUTION OF THE WORK
 - 7.8 KEY FIGURES
 - 7.9 FINAL ACCEPTANCE DOCUMENTATION

- 8 COMMISSIONING
 - 8.1 GENERAL
 - 8.2 ORGANIZATION
 - 8.3 QUALITY ASSURANCE PRINICPLES
 - 8.4 PLANNING AND PROGRESS
 - 8.5 WORK REPORT
 - 8.6 MANHOURS
- 9 LOGISTICS
 - 9.1 FLOTEL
 - 9.2 MARINE SERVICES
 - 9.3 HELICOPTER TRANSPORTATION
- **10 APPENDICES**
 - APPENDIX 1 Bid Evaluation TCP-2 Extension Engineering Services Contract F.D87.
 - APPENDIX 2 TCP-2 Extension Bid Evaluation Construction Contract
 - APPENDIX 3 Lifting Bid Evaluation
 - APPENDIX 4 Hook Up and Planning
 - APPENDIX 5 Hook Up Progress Curves
 - APPENDIX 6 Hook Up Cumulative Manhours
 - APPENDIX 7 Flotel Bid Evaluation

VOLUME III - COST

- 1 GENERAL INTRODUCTION
 - 1.1 SUMMARY
 - 1.2 OVERALL PROJECT PLAN
 - 1.3 ORGANIZATION WITHIN EAN
 - 1.4 MAIN CONTRACTS
 - 1.5 NORWEGIAN CONTENT
 - 1.6 BUDGETS / COST ESTIMATES
 - 1.7 PROJECT COST
- 2 PROJECT MANAGEMENT
 - 2.1 ORGANIZATION
 - 2.2 PROJECT SUPERVISION COST
- 3 ENGINEERING
 - 3.1 SUMMARY
 - 3.2 TENDER / BID EVALUATION
 - 3.3 ORGANIZATION OF THE WORK
 - 3.4 PLANNING / PROGRESS
 - 3.5 COST
 - 3.6 EXPENDED MANHOURS
 - 3.7 RATIOS
- 4 PROCUREMENT
 - 4.1 ORGANIZATION OF WORK
 - 4.2 COST OF MATERIAL & EQUIPMENT
 - 4.3 EXPENDITURE AGAINST TIME
 - 4.4 DELIVERY TIME

- 5 YARD CONSTRUCTION
 - 5.1 SUMMARY
 - 5.2 TENDER / BID EVALUATION

5.3 ORGANIZATION OF THE WORK

5.4 PLANNING AND PROGRESS

- 5.5 COST
- 5.6 EXPENDED MANHOURS
- 5.7 WEIGHTS
- 5.8 RATIOS
- 6 TRANSPORTATION AND LIFTING
 - 6.1 TRANSPORTATION
 - 6.2 COST
 - 6.3 PLANNING
- 7 HOOK UP AND INTEGRATION
 - 7.1 PRE-HOOK-UP
 - 7.2 HOOK-UP AND COMMISSIONING
 - 7.3 OTHER CONTRACTS
- 8 LOGISTICS
 - 8.1 GENERAL
 - 8.2 FLOTEL COST
 - 8.3 MARINE SERVICES COST
 - 8.4 HELICOPTER TRANSPORT
 - 8.5 TCP-2 EXTENSION ENVIRONMENTAL COST
 - 8.6 OTHER CONTRACTS

9	APPENDICES					
	APPENDIX	1	-	BID EVALUATION - TCP-2 EXTENSION - ENGINEERING SERVICES - CONTRACT F.087.		
	APPENDIX	2	-	TCP-2 EXTENSION - BID EVALUATION - CONSTRUCTION CONTRACT		
	APPENDIX	3	-	LIFTING BID EVALUATION		
	APPENDIX	4	-	HOOK UP AND PLANNING		
	APPENDIX	5	-	HOOK UP PROGRESS CURVES		
	APPENDIX	6	-	HOOK UP CUMULATIVE MANHOURS		
	APPENDIX	7	-	FLOTEL BID EVALUATION		

VOLUME I - PROJECT DESCRIPTION

1. GENERAL DESCRIPTION OF TCP-2 EXTENSION PROJECT .

2. PRINCIPLES OF ENGINEERING DESIGN

3. NEF - ELECTRICAL POWER SUPPLY

4. APPENDICES

TCP-2 EXTENSION FINAL REPORT

VOLUME I

PROJECT DESCRIPTION

TCP2 EXTENSION FINAL REPORT

DETAILED INDEX FOR VOLUME I

VOL I PROJECT DESCRIPTION

- 1 GENERAL DESCRIPTION OF TCP-2 EXTENSION PROJECT
 - 1.1 INTRODUCTION
 - 1.2 FIELDS LOCATION
 - 1.3 EXTENSION LOCATION
 - 1.3.1 Outline of M50, P53 and Integration

1.3.1.1 Module M50

- 1.3.1.2 Pancake P53
- 1.3.1.3 Tie-In Installations
- 1.4 PROCESS DESCRIPTION
 - 1.4.1 Introduction
 - 1.4.2 Description
 - 1.4.2.1 NEF Gas Treatment
 - 1.4.2.2 ODIN Gas Treatment
 - 1.4.2.3 Condensate Separation
 - 1.4.2.4 Methanolated Water System
 - 1.4.2.5 Triethylene Glycol (TEG) System
 - 1.4.2.6 Methanol Injection System
 - 1.4.2.6.1 General
 - 1.4.2.6.2 Injection to the Articulated Column FCS for NEF Field
 - 1.4.2.6.3 Injection Downstream ODIN and NEF Slug Catchers
 - 1.4.2.7 Process Drainage System
 - 1.4.2.8 Flare Drainage System

1.4.2.8.1 General

- 1.4.2.8.2 LP system
- 1.4.2.8.3 HP system
- 1.4.2.8.4 LT system

1.4.2.9 Fuel Gas System

1.4.2.9.1 Fuel Gas for Blanketing

1.4.2.9.2 Fuel Gas Used as Start Up Gas

1.4.2.10 Upset Operating Conditions

1.4.2.10.1 Slug formation

1.4.2.10.2 Depressurization

1.5 DESCRIPTION OF PROCESS SAFETY SYSTEMS

1.5.1 General Description of Process Safety Systems

1.5.2 Fire Protection

1.5.2.1 Introduction

1.5.3 Protection Against Process Over Pressure

- 1.5.3.1 Protection for High Pressure Gas Vessels CV 1A, CV 210, CV 201 and CV 211.
- 1.5.3.2 ODIN Condensate Lines Downstream the ESDV V1A.2 and ESDV V201.3.
- 1.5.3.3 NEF Condensate Lines Downstream the ESD V210.2 and ESDV V211.3.
- 1.5.3.4 Protection of Methanolated Water System.

1.5.4 Thermal Expansion in CE 203 / CE 211

1.5.5 Protection on Shell Side of Condensate Heaters, TEG Lines and Glycol Surge Drums CV 17 A/B/C

1.5.6 Pumps Discharge

1.6 DESCRIPTION OF GAS RELIEF SYSTEM

- 1.6.1 General
- 1.6.2 Basis of Design
- 1.6.3 Description of the Relief / Vent System
 - 1.6.3.1 Low Pressure Vent System
 - 1.6.3.2 High Pressure Relief System
 - 1.6.3.3 Low Temperature Relief System

1.6.3.3.1 System Description

1.6.3.3.2 Calculation Summary

- 1.6.4 Depressurization of High Pressure Vessels, Lines and Sea Lines
 - 1.6.4.1 Depressurization of High Pressure Vessels and Lines

1.6.4.1.1 Introduction

1.6.4.1.2 Basis for Calculations

1.6.4.1.3 Calculation Results

1.6.4.2 Sea Line Depressurization

1.6.4.2.1 Introduction

- 1.6.4.2.2 NEF Sea Line Depressurization
- 1.6.4.2.3 ODIN Sea Line Depressurization
- 1.6.5 Fire Protection
 - 1.6.5.1 Introduction
 - 1.6.5.2 Liquid Vapourization Risk
 - 1.6.5.3 Gas Expansion Risk
 - 1.6.5.4 Calculation Results

1.6.6 Protection Against Process Over Pressure

- 1.6.6.1 Protection for High Pressure Gas Vessels CV 1A, CV 210, CV 201 AND CV 211
- 1.6.6.2 ODIN Condensate Lines Downstream the ESDV V1A.2 and ESDV V201.3

1.6.6.2.1 Description

1.6.6.2.2 Calculation Results

1.6.6.3 NEF Condensate Lines Downstream the ESDV V210.2 and ESDV V211.3.

1.6.6.3.1 Description

1.6.6.3.2 Calculation Results

- 1.6.6.4 Thermal Expansion in CE 203/CE 211
- 1.6.6.5 Protection of Methanolated Water System
 - 1.6.6.5.1 Protection of Vessel CV 220 Methanolated Water Flash Drum
 - 1.6.6.5.2 Protection of Vessel CV 222 Methanolated Water Drainage Tank
- 1.6.6.6 Protection on Shell Side of Condensate Heaters, TEG Lines and Glycol Surge Drum CV 17 A/B/C
- 1.6.6.7 Methanolated Water Storage Tank CV 9
- 1.6.6.8 Pumps Discharge
- 1.7 GENERAL DRAWING LIST
 - 1.7.1 General Drawings
 - 1.7.1.1 Process Flowsheets Schematic Drawings
 - 1.7.1.2 Process / Utilities Drawings P & IDs
 - 1.7.1.3 Plot Plans Arrangement Drawings

2	PRIN	CIPLES	OF ENGINE	ERING DESIGN
	2.1	ENVIRO	NMENTAL C	ONDITIONS
		2.1.1	Wind	
			2.1.1.1	Wind Profile
		·	2.1.1.2	Factors in the
			2.1.1.3	Reference Wind

2.1.1.4 Prewailing Winds

2.1.1.5 Storm Wind Direction

2.1.2 Ambient Air Conditions

2.1.2.1 Ambient Air Temperature

2.1.2.2 Ambient Air Relative Humidity

Power Law for Wind Profile

Speed

2.1.2.3 Rainfall

2.1.2.4 Atmospheric Pressure

2.1.2.5 Snow and Ice Accumulation

2.1.3 Sea Water Characteristics

2.1.3.1 Sea Water Temperature

2.1.3.2 Sea Water Salinity

2.1.3.3 Sea Water Oxygen Content

2.1.4 Water Depth - Sea Level

2.1.4.1 Water Depth

2.1.4.2 Tide in Storm Conditions

2.1.4.3 Tide in Operating Conditions

2.1.5 Waves and Current

- 2.1.5.1 Storm Conditions
- 2.1.5.2 Operating Conditions
- 2.1.5.3 Prevailing Wave Direction

2.2 DOCUMENT NUMBERING, DISTRIBUTION AND ROUTING

- 2.2.1 Foreword
- 2.2.2 Units of Measurement
- 2.2.3 Numbering System
 - 2.2.3.1 Numbering of Equipment
 - 2.2.3.2 Numbering of Engineering Drawings (Including Isometrics)
 - 2.2.3.3 Numbering of Technical Documents Other Than Drawings
 - 2.2.3.3.1 Prefix
 - 2.2.3.3.2 Field Specification
 - 2.2.3.3.3 Codification of Installation
 - 2.2.3.3.4 Codification of Speciality
 - 2.2.3.3.5 Chronological Number
 - 2.2.3.3.6 Revision Index
 - 2.2.3.3.7 Numbering Sample
 - 2.2.3.4 Numbering of Inquiries
 - 2.2.3.5 Numbering of Engineer's Purchase Order
 - 2.2.3.6 Numbering of Letters, Transmittals, Telexes, Minutes of Meeting
 2.2.3.6.1 Numbering of Letters
 2.2.3.6.2 Numbering of Telexes
 2.2.3.6.3 Numbering of Transmittals
 - 2.2.3.6.4 Numbering of Minutes of Meeting

2.2.4 Document Distribution

2.3	ENGINEERING DESIGN					
	2.3.1	Structur	al Design			
	2.3.2	Mechanic	al Design			
		2.3.2.1	Applicable Codes / Standards			
	2.3.3	Piping D	esign			
		2.3.3.1	Design			
		2.3.3.2	Piping Materials			
			2.3.3.2.1 Piping Materials on TCP-2			
			2.3.3.2.2 Piping Materials on DP-2			
		2.3.3.3	Piping Design Pressure Classes			
		2.3.3.4	Piping Stress Analysis			
	2.3.4	Electric	al Design			
		2.3.4.1	Motor Control Centre MCC			
		2.3.4.2	Lighting Distribution Board "DB"			
		2.3.4.3	Power Distribution Board "DB"			
		2.3.4.4	Trace Heating			
		2.3.4.5	Hazardious Areas			
		2.3.4.6	Design			
	2.3.5	Instrume	ent Design			
		2.3.5.1	Instrument Installation M50 & P53			
·		2.3.5.2	Process Control & Monitoring			
		2.3.5.3	ESD and Process Safety			

- 2.3.5.4 Fire and Gas, Public Address System
- 2.3.6 Safety / Loss Prevention

2.3.6.1 Area Classification

2.3.6.2 Escape Routes

- . 2.3.6.3 Firewater System
 - 2.3.6.4 Fire Fighting Equipment

- 3 NEF ELECTRICAL POWER SUPPLY
 - 3.1 GENERAL DESCRIPTION OF NEF POWER SUPPLY INSTALLATION
 - 3.2 DESIGN PHILOSOPHY
- 4 APPENDICES
 - APPENDIX 1 NEF Gas Composition, Reservoir Pressure and Production Profile
 - APPENDIX 2 ODIN Gas Composition, Reservoir Pressure and Production Profile
 - APPENDIX 3 Process Flow Diagrams

APPENDIX 4 - Safety Analysis Table (SAT)

- APPENDIX 5 Safety Analysis Function Evaluation Chart
- APPENDIX 6 Functional Description of the ESD System
- APPENDIX 7 Description of Process Safety System
- APPENDIX 8 Pressure Drop Calculations for LP Vent System
- APPENDIX 9 Back Pressure Calculations LT Relief System - HP Relief System
- APPENDIX 10 Calculation of Temperature Downstream of the Blow Down Valves
- APPENDIX 11 Fire Protection Liquid Vapourization - Gas Expansion
- APPENDIX 12 Back Pressure Calculations LP Vent System to Glycol Surge Drums CV 17

APPENDIX 13 - Data Sheets for Safety Relief Valves

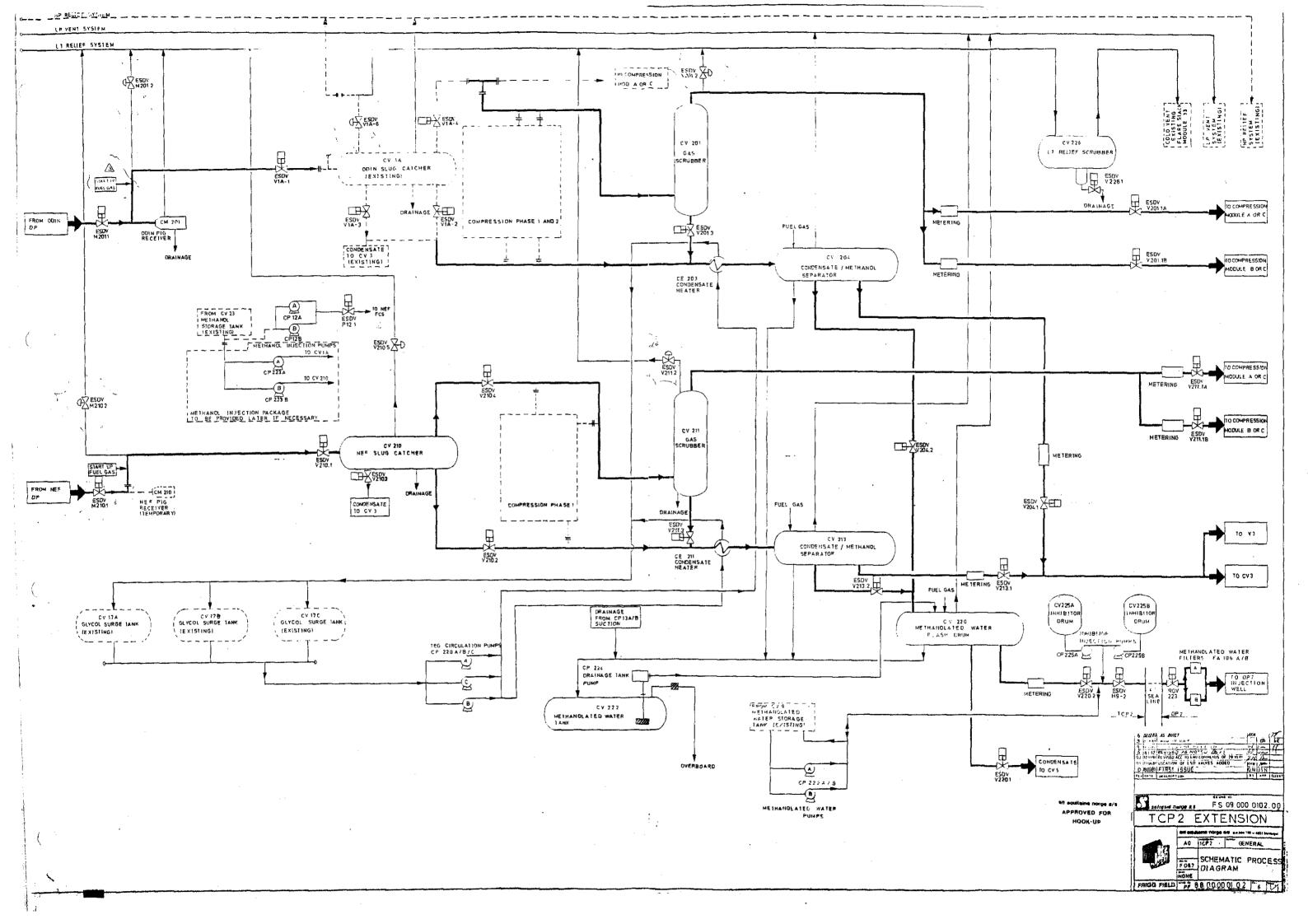
1 GENERAL DESCRIPTION OF TCP-2 EXTENSION PROJECT

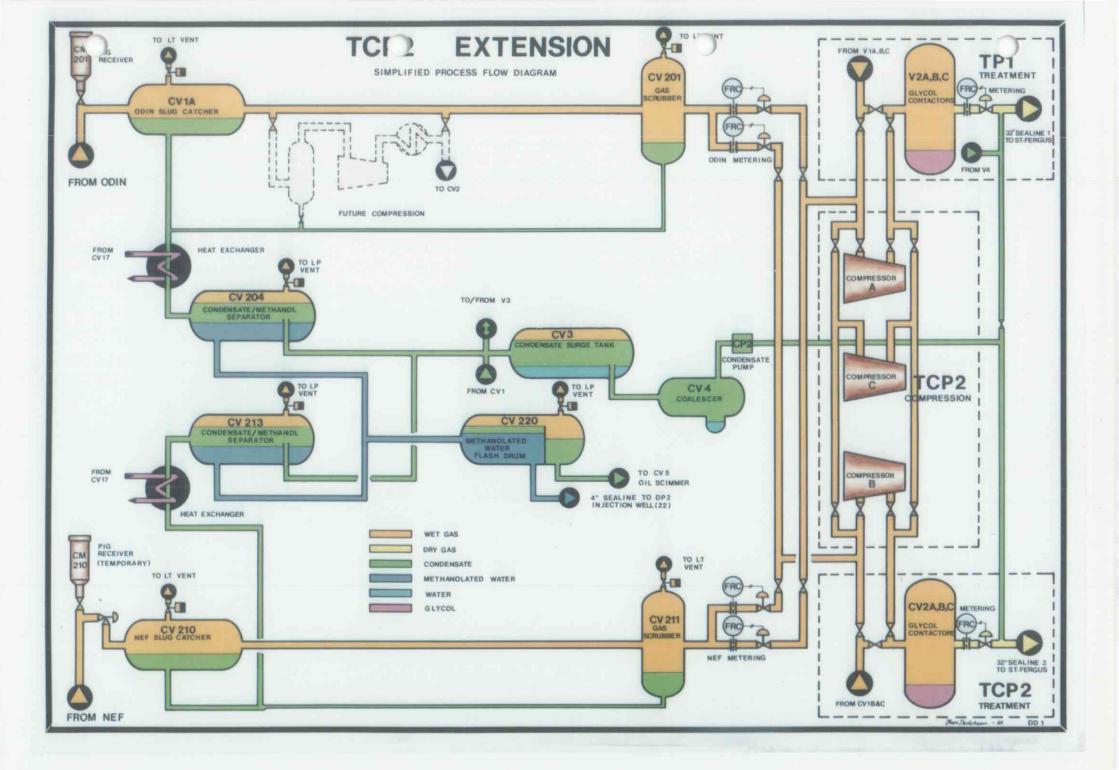
1.1 INTRODUCTION

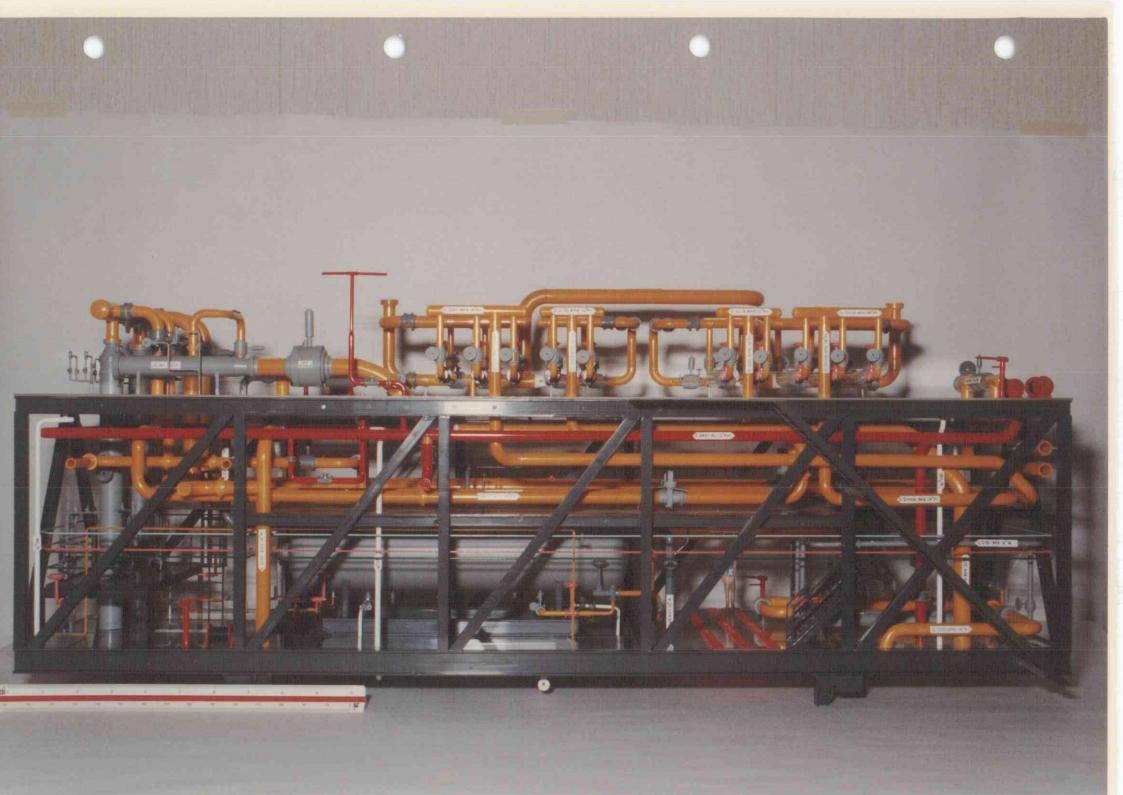
The purpose of the new facilities installed on the Frigg Field is to:

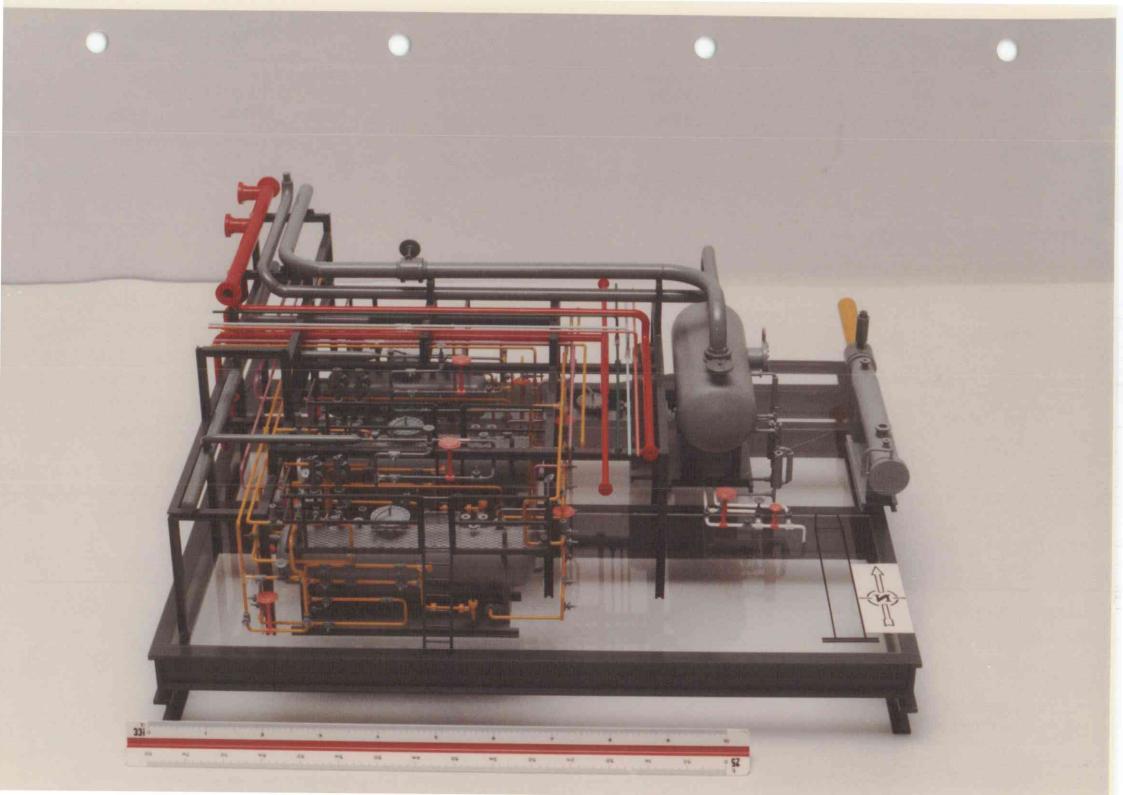
- Process wet gases coming from the NORTH-EAST FRIGG (NEF) and ODIN fields.
- Recover and treat the condensates.
- Measure for royalty purposes the treated gases and condensates.
- Inject the gases into the FRIGG gas production system for a last treatment (glycol dehydration), compression (using FRIGG main compressors) and for transportation to Scotland.
- Inject the condensates, using existing equipment, into the FRIGG gas transportation system.

For this purpose a new gas treatment facility called Module M50 and a condensate recovery package called Pancake P53 have been constructed and integrated by connection pieces into the existing facilities on the TCP-2, QP and DP-2 Platforms on the Frigg Field.


A simple process sketch of the new installations is shown on drawing:


FF 88 00 00 0102 - Schematic Process Diagram (Figure 1.1)


The models of Module 50 and Pancake 53 are shown on the enclosed pictures.


FIGURE 1.1

Drawing No.: FF 88 00 00 0102 Schematic Process Diagram

1.2 FIELDS LOCATION

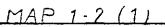
Frigg Field, North-East Frigg Field (NEF) and the Odin Field are located in the northern part of the North Sea about 190 km off the Norwegian coast, 190 km from the Shetland Islands and 350 km from Scotland.

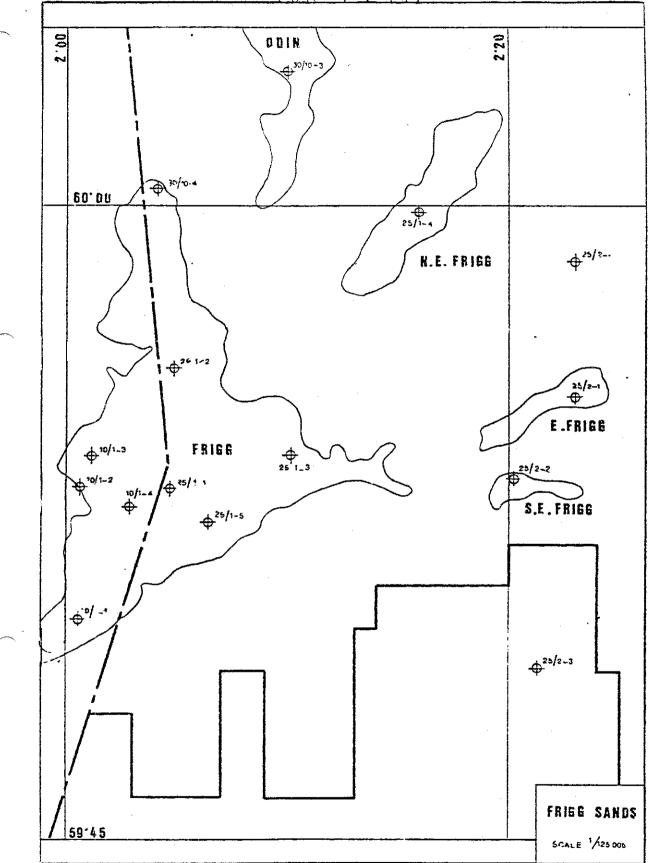
The map Figure No. 1.2 gives the relative location of NEF and Odin Fields in reference to the Frigg Field.

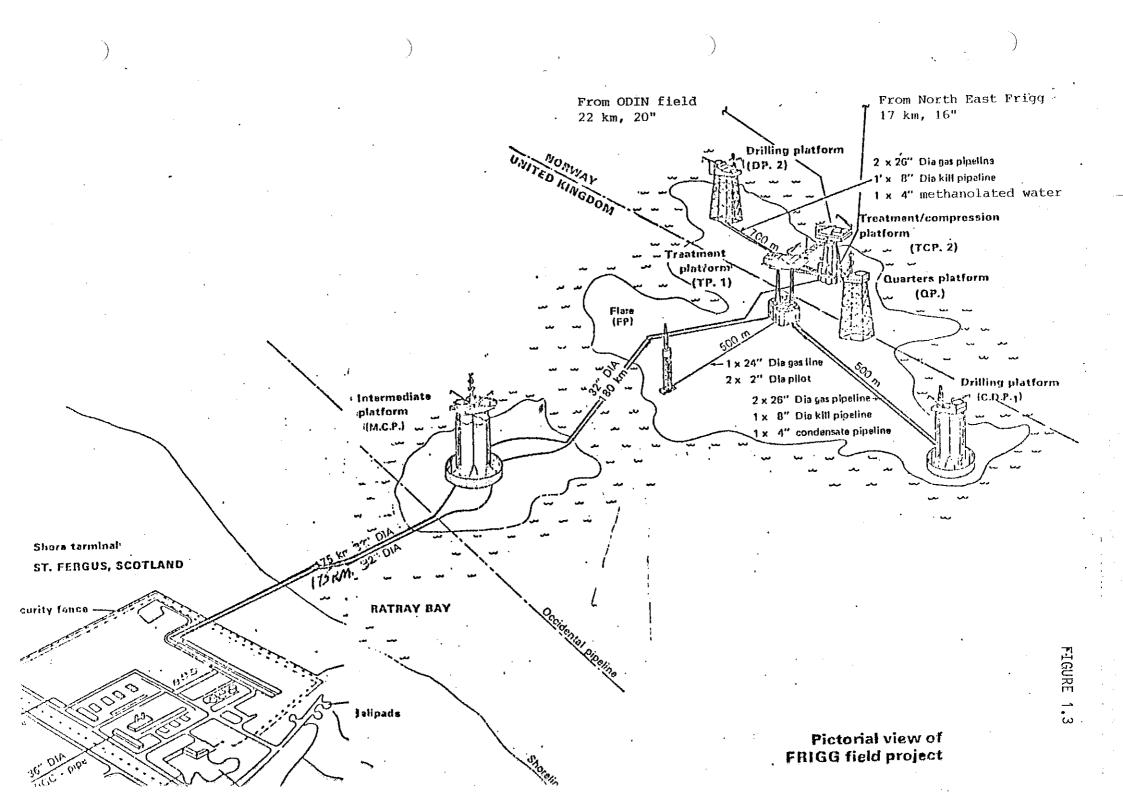
The Odin Field is located at a distance of about 22 km from the Frigg Field.

The NEF Field is located at a distance of about 17 km from the Frigg Field.

These fields are located inside the Norwegian coast water boundaries.


The Odin Field is developed in a conventional way; i.e. a fixed drilling / production platform of the jacket type.


The NEF Field is developed by means of a sub-sea technology with remote control from the Frigg Field through an articulated column located at the field.


Figure 1.3 shows the lay-out of the Frigg field treatment and transportation facilities.

•

1.3 EXTENSION LOCATION

The locations of M5D and P53 onboard TCP-2 platform are shown on drawing Nos.:

FF 85 00 00 0030 - Admissible Load on Main Deck for Module 50 (Figure 1.4)

and

e

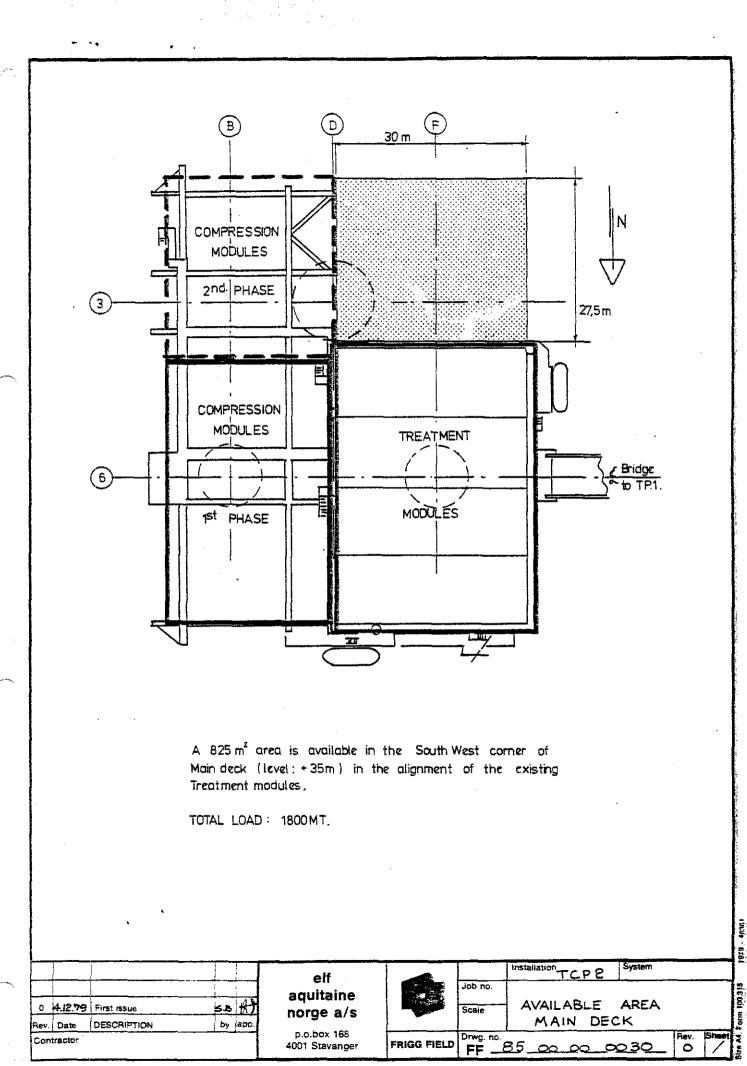
FF 85 00 00 0031 - Admissible Load on Cellar Deck Pancake 53 (Figure 1.5)

The gas from the ODIN field is received on TCP-2 through an existing 20" riser.

The gas from the NEF Field is received on TCP-2 through an existing 16" riser.

The gas treatment facilities and the condensate recovery facilities of the two gases are located on TCP-2.

The DP-2 platform shall support the waste methanolated water facilities.


FIGURE 1.4

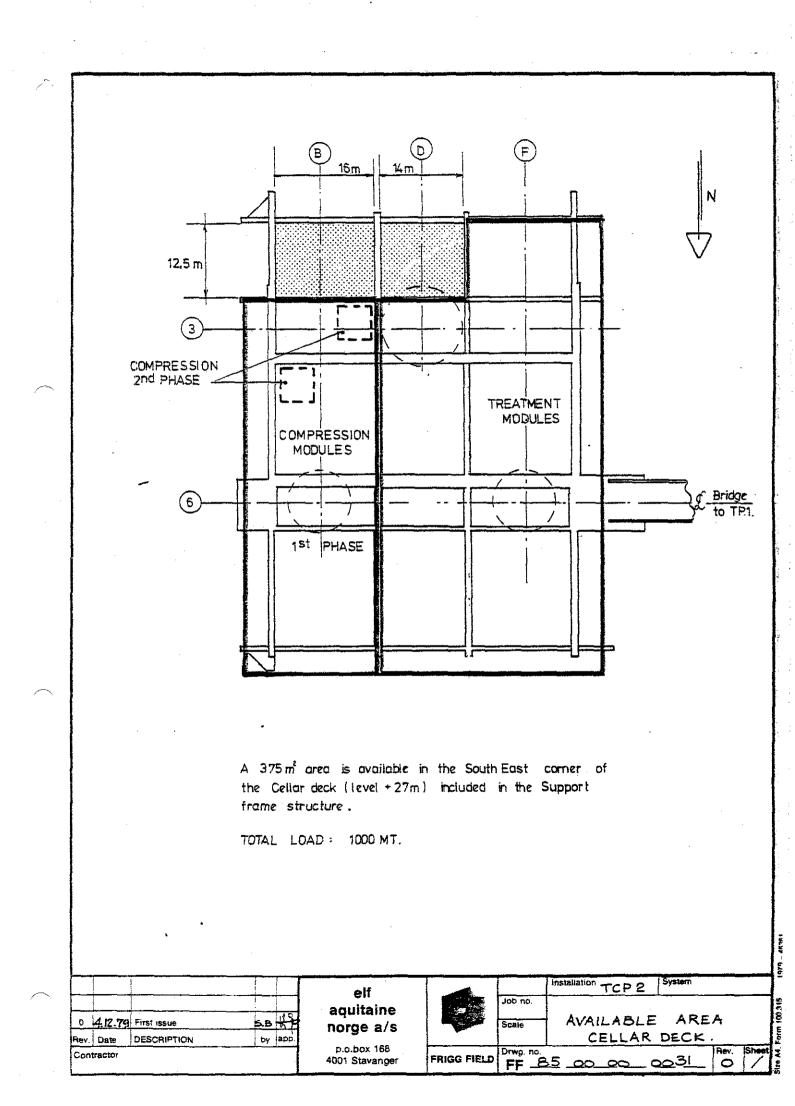

Drawing No.: FF 85 00 00 0030 Admissible Load on Main Deck for Module 50

FIGURE 1.5

.

Drawing No.: FF 85 00 00 0031 Admissible Load on Cellar Deck Pancake 53

1.3.1 Outline of M50, P53 and Integration

1.3.1.1 Module M50

The overall dimensions of this module are:

- Length	31		metres
- Width	8.1		metres
- Height	8.2 to	11.2	metres

Total weight at lifting stage: About 700 tons.

The plot plan drawing FF 88 20 00 0105 gives an outline of the main equipment. (Figure 1.6)

1.3.1.2 Pancake 53

P53 is a steel floor which supports the equipment.

The overall dimensions in plan are:

- Length - Width - Height of equipment and pipework:		metres metres metres above steel floor plating
--	--	--

Total weight at lifting stage: About 100 tons.

The plot plan drawing FF 88 20 00 0101 gives an outline of the main equipment locations. (Figure 1.7)

1.3.1.3 Tie-In Installations

Prefabricated piping spools, structural works, electric equipment and instrumentation are installed to perform the integration between:

- M50 and P53
- M50 and existing facilities P53 and existing facilities
- Existing facilities

An outline of the tie-in installations is given on the following drawings:

FF 88 20 00 7300 - Tie In Piping Arrangement Cellar Deck -El. 100.000. (Figure 1.8)

FF 88 20 00 7305 - Tie In Piping Arrangement Main Deck -El. 108.850. (Figure 1.9)

FF 88 20 00 7307 - Tie In Piping Arrangement Upper Deck -El. 116.350. (Figure 1.10)

FF 83 20 00 8860 - General Arrangement of DP-2 Package of Methanolated Water Injections. (Figure 1.11)

These drawings give mainly an outline of the piping and mechanical installations.

A major part of the electrical and instrumentation work is integration into existing systems for safety, process operations, shut down system and power distribution in TCP-2 area M32 and P13 and on QP platform. FIGURE 1.6 Drawing No.: FF 88 20 00 0101 Pancake 53 - Plot Plan

.

FIGURE 1.7 Drawing No.: FF 88 20 00 0105

Static Module 50 - Plot Plan

FIGURE 1.8

Drawing No.: FF 88 20 00 7300 Tie-In Piping Arrangement Cellar Deck

FIGURE 1.9

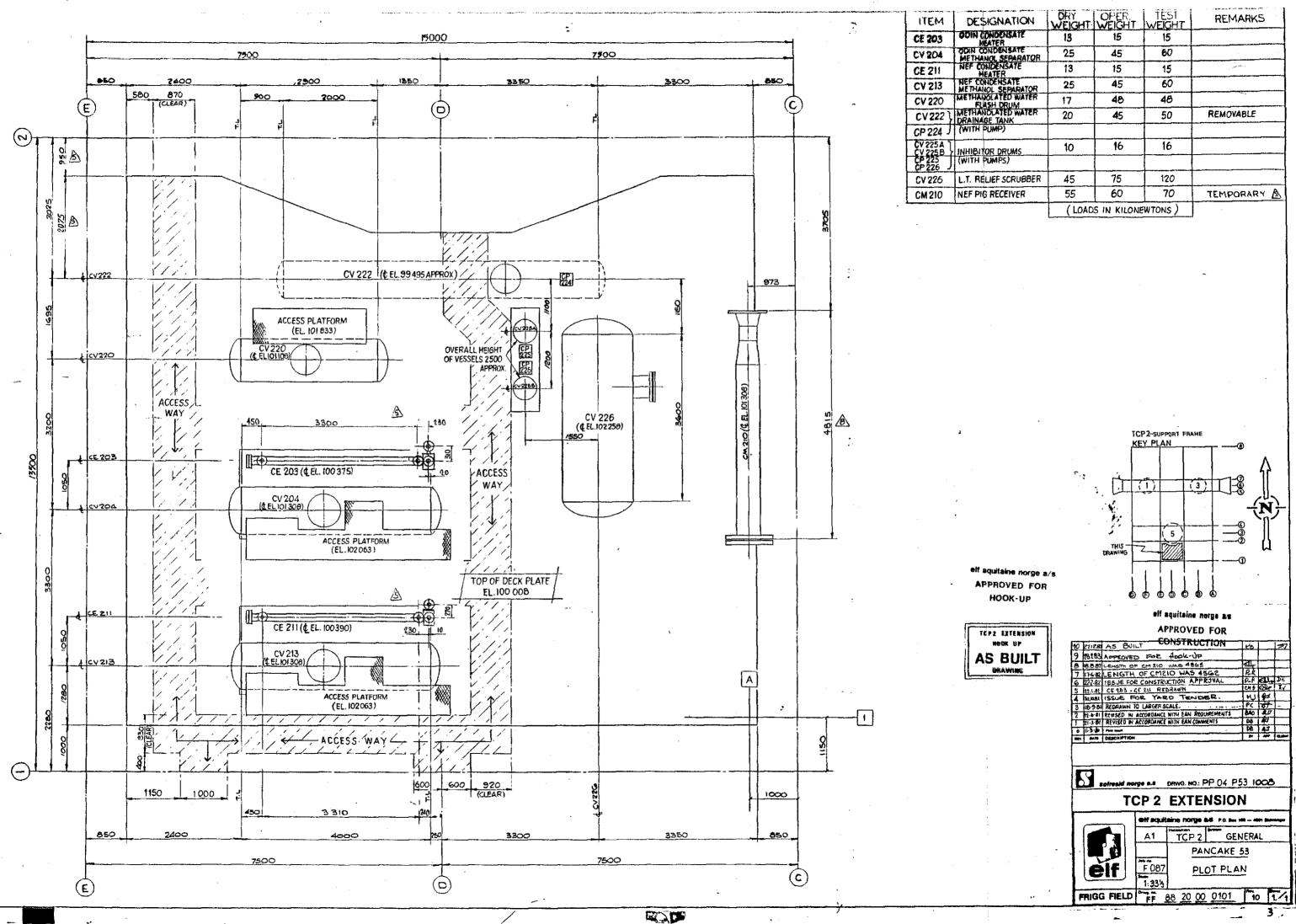
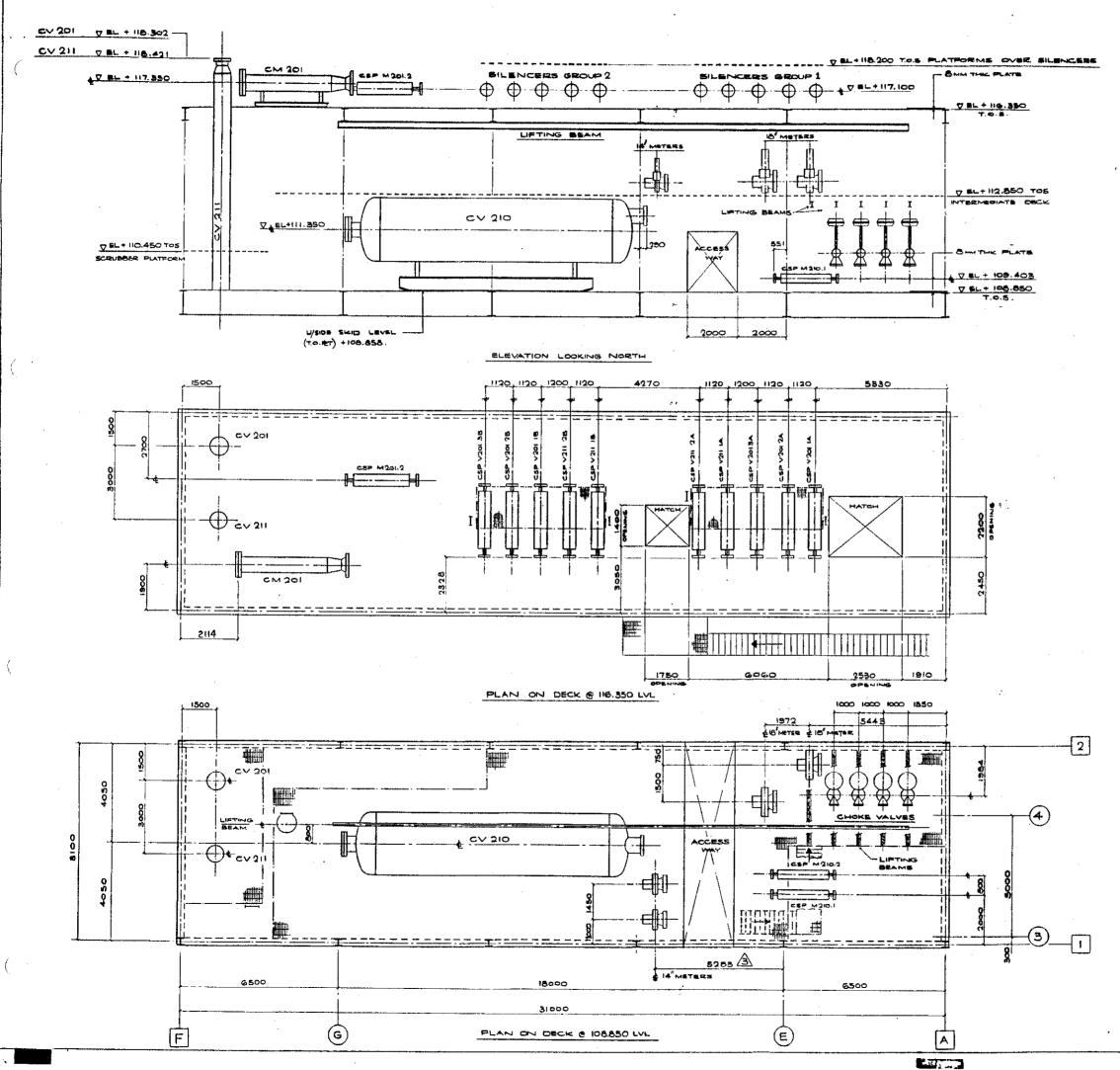
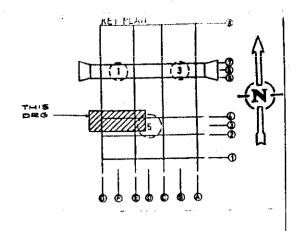

Drawing No.: FF 88 20 00 7305 Tie-In Piping Arrangement Main Deck

FIGURE 1.10 Drawing No.: FF 88 20 00 7307 Tie-In Piping Arrangement Upper Deck

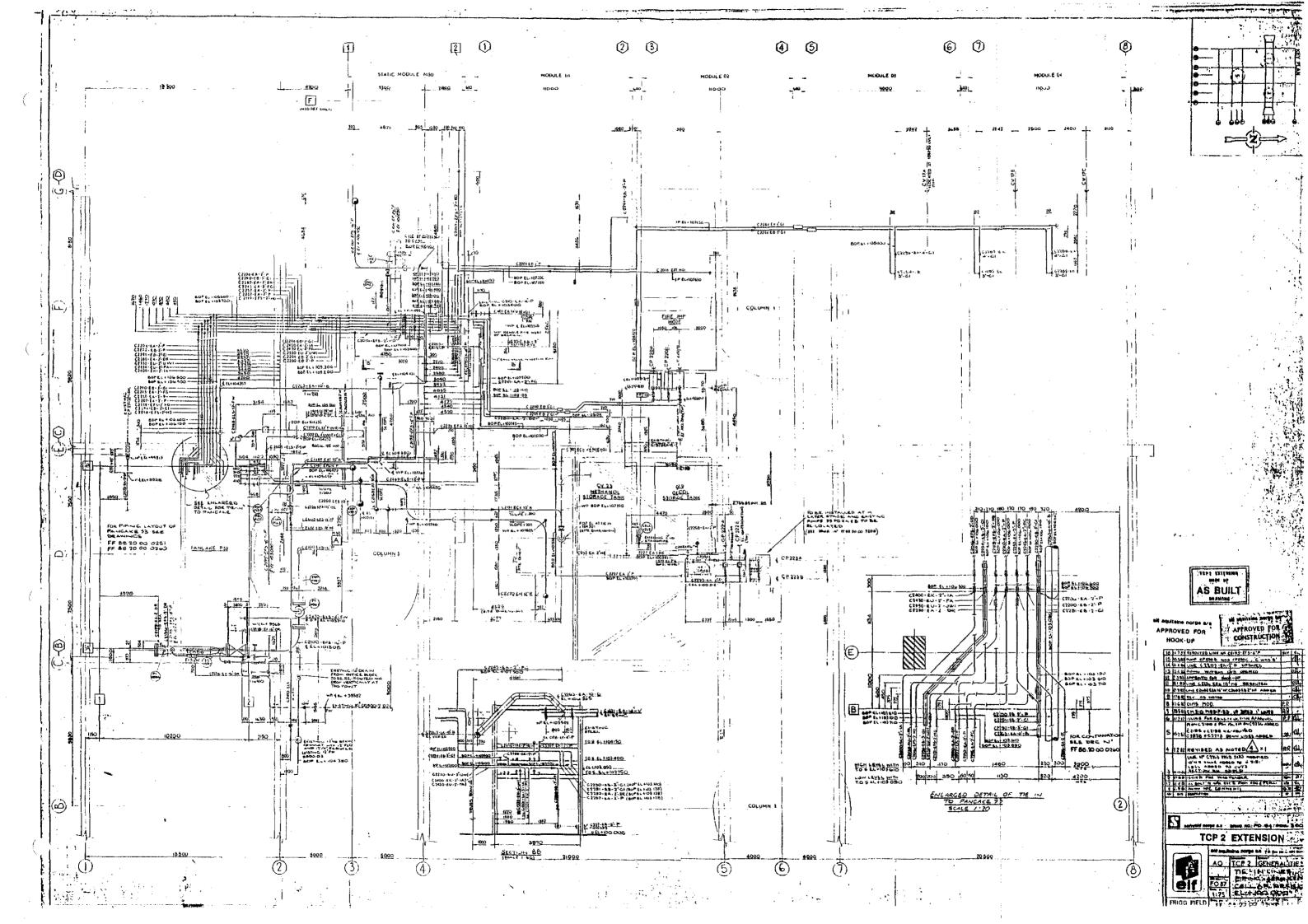

FIGURE 1.11

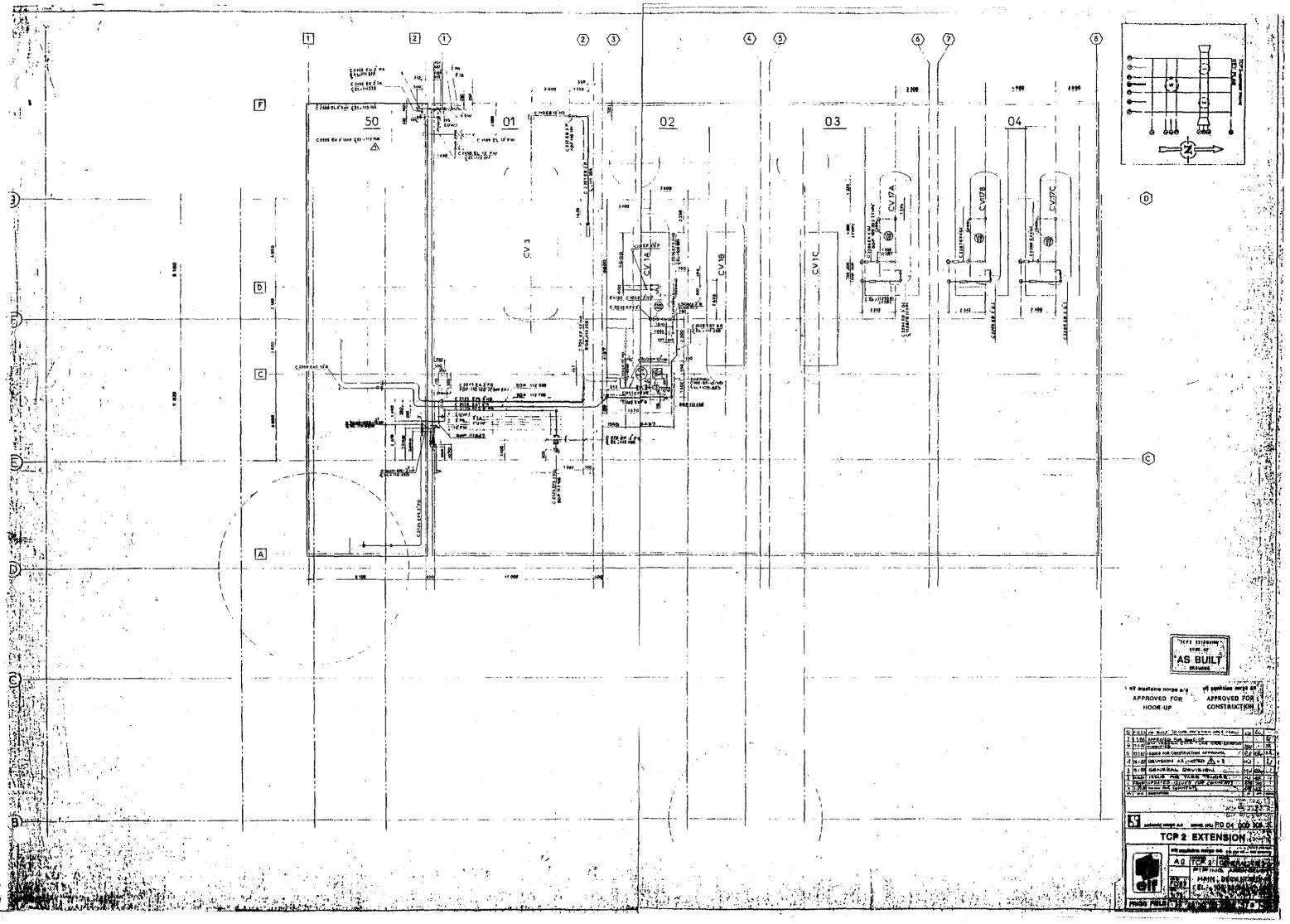

Drawing No.: FF 83 20 00 8860

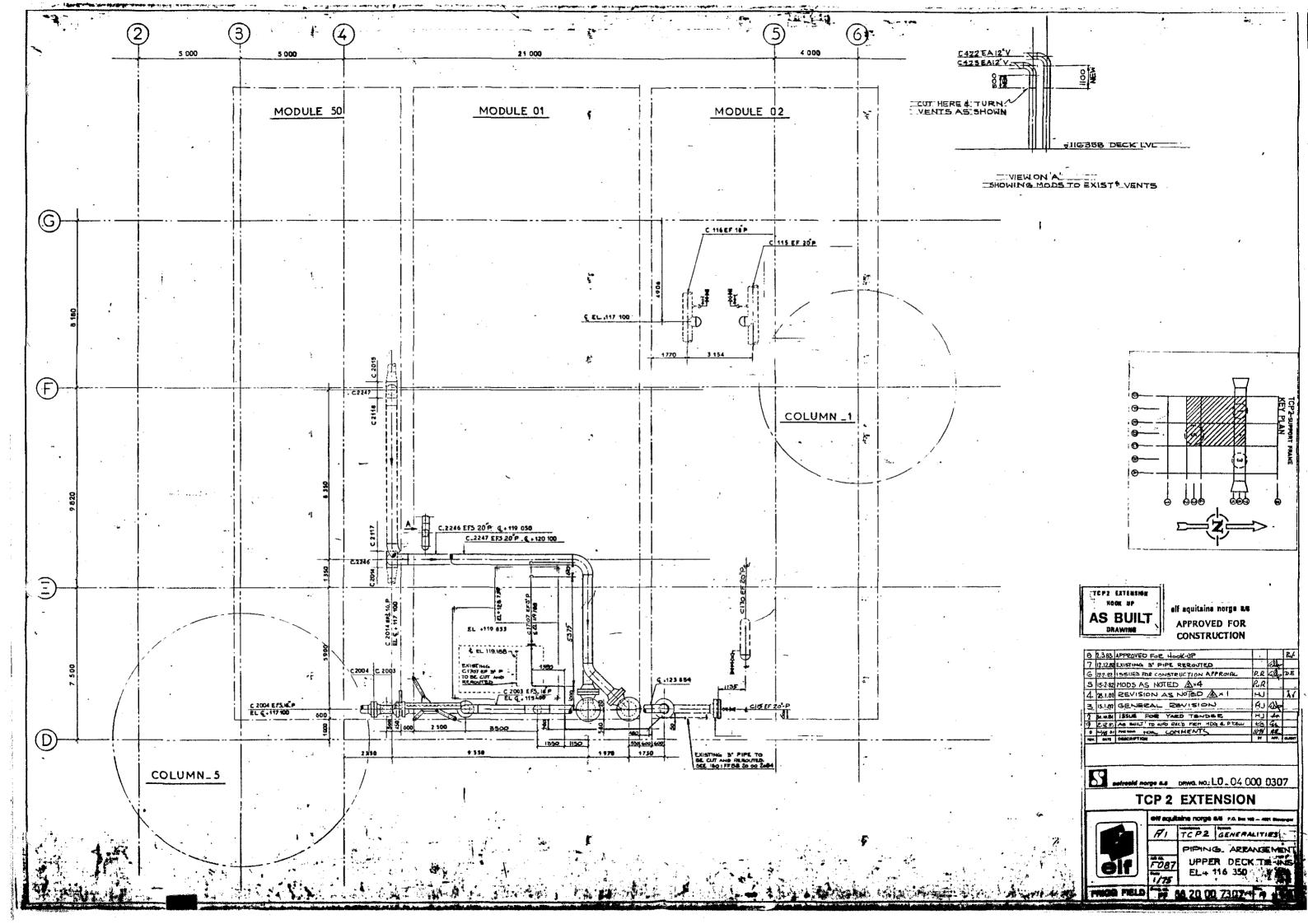
General Arrangement of DP-2 Package of Methanolated Water Injections

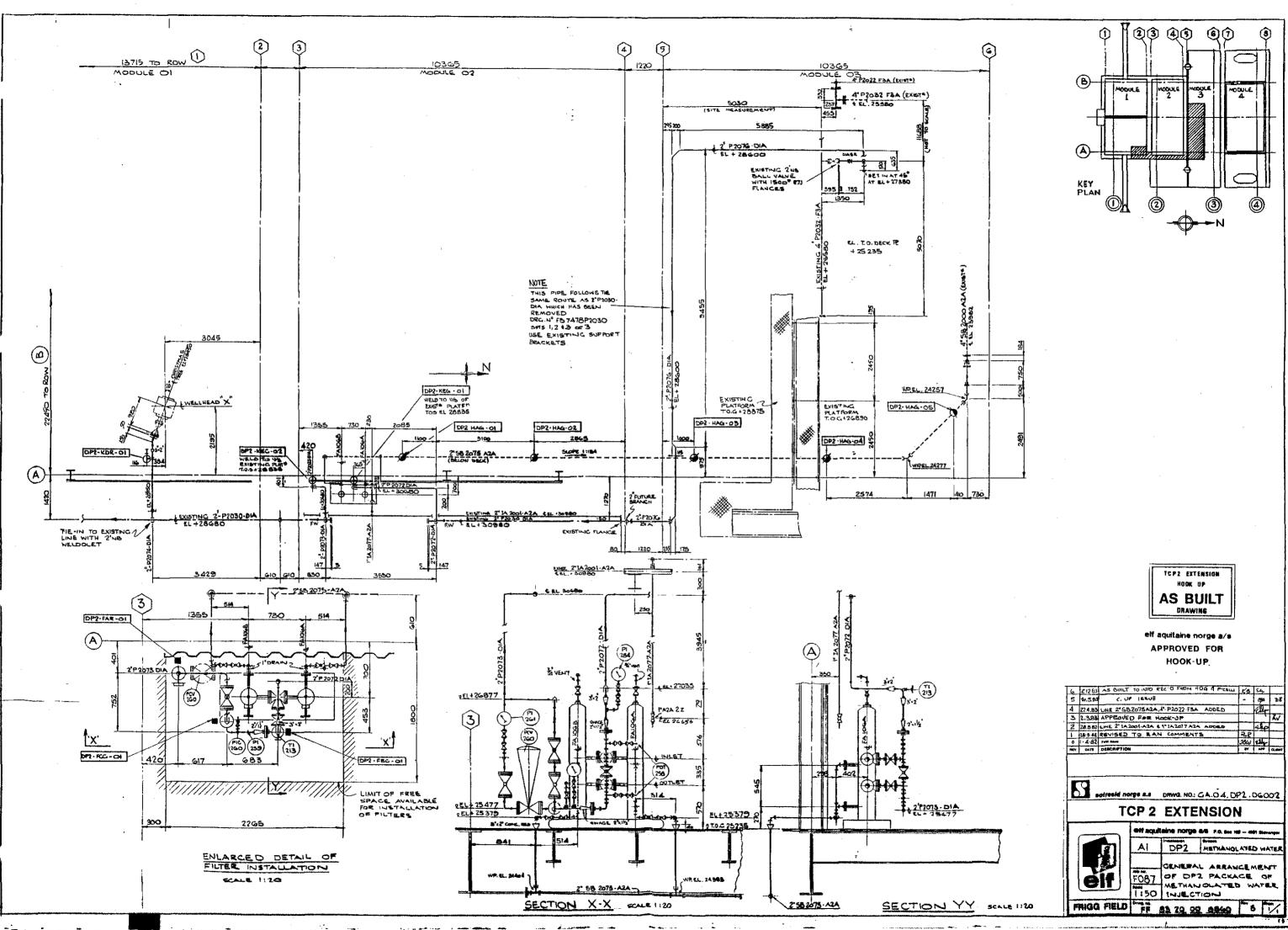
	and an and a streng being the strength of	the second states of the	
ORY WEIGHT	OPER.	i test Weight i	REMARKS
13	15	15	
25	45	60	
13	15	15	
25	45	60	
17	48	48	
20	45	50	REMOVABLE
10	16	16	
45	75	120	
55	60	70	TEMPORARY A
(LOAD	S IN KILONE	WTONS)	,
	13 25 13 25 17 20 10 45 55	WEIGHT WEIGHT 13 15 25 45 13 15 25 45 17 48 20 45 10 16 45 75 55 60	13 15 15 25 45 60 13 15 15 25 45 60 17 48 48 20 45 50

:		LOADS IN KN			
ITEM	DESIGNATION	DRY WT	OPER V	TEST W ^T	REMARKS
M 201	ODIN PIG RECEIVER	75	80	9 0	WITH SUPPORTS
× 201	ODIN GAS SCRUBBER	ee	105	110	WITH SUPPORTS
× 20	NEF GAS SCRUBBER	70	8 0	85	WITH SUPPORTS
v 210	NEF SLUG CATCHER	1000	1450	1520	WITH SUPPORTS
	18 METER DANIEL	40	40	41	
	14 METER DANIEL	30	30	31	
CSP 1201.2	SILENCER	ю	10	10	
(SP 1210.1	SILENCER	0	ю	ю	
CSP 12:0.2		10	i0	10	
	SILENCERS. GROUP.1.	75.	75	.75	
	SILENCERS GROUP. 2.	75	75	75	


TCPS EXTENSION 800K UP AS BUILT BRAWING


H	aquitaine	no	rge	2/5
A	PPROVE	D	FO	R
	HOOK	-0	p	


elf aquitains norge NS APPROVED FOR CONSTRUCTION


2

					_	_	
8 77.12 8	AS BUIL	л ^т			13		57
7 18263	APPROVE	D 762	HOOK-UP	•			21
6 1.62	2114 WA	5 2514			P.C		
5 22-282	ISSUED F	OR CONST	RUCTION AP	PROVAL	R,R	Ebly	₽£
4. 30.10.81	ISSUE	FOR Y	ARD THE		HJ	97	
3 30281	DIMENS		NM FND# C	, .	щJ	786-	
2 22.5.01	REDR	AWN			7	9 7	
1 3.5.61	ISSUED) FOR	COMMEN	15	-	-	
0 23.3.81					825	· · · · · · · · · · · · · · · · · · ·	
MEY. SATE	DESCRIPTION						
S sofresid norge a.a DRWG, NO: PP. 04 .M50.01052.							
TCP 2 EXTENSION							
			aine norge i	10 P G. Barr 10	L		
					6 IZ A	17 810-1	+
		etf squit					
		etf squit	aine norge i Interitional TCP 2 STATIC	Stan GEN	JL. 18.		
Û,		Al Al FO67	aine norge i Interitional TCP 2 STATIC		JL. 18.		
ě		ett squit A 1 F 0 6 7 Jun 1 : 75	aine norge i Interitional TCP 2 STATIC		JL. 18.		
		A 1 A 1 F 0 6 7 Sum 1:75 Drag as	aine norge i Interitional TCP 2 STATIC	GEN MODU	JL. 18.		

1.4 PROCESS DESCRIPTION

1.4.1 Introduction

The purpose of the new installation on the TCP-2 platform is to:

- Treat the gas coming from the NORTH EAST FRIGG (NEF) and ODIN fields.
- Recover the condensate
- Meter the treated gases and the condensates
- Inject the gases into the FRIGG gas production system for gas compression and glycol dehydration and further transportation to Scotland.
- Inject the condensates into the FRIGG condensate system.

Methanol will be injected in the ODIN and NEF field streams at the wellhead to prevent hydrate formation in the sea line. The methanolated water facilities on TCP-2 are common to both fields.

The ODIN and NEF gases may eventually have to be compressed in the future. This depends on the reservoir pressure decline. There are two possibilities for each field:

- Slow pressure decline (corresponding to a water drive in the reservoir)
- Steep pressure decline (corresponding to no water drive in the reservoir)

NEF gas composition, reservoir pressure and production profile is given in Appendix 1.

ODIN gas composition, reservoir pressure and production profile is is given in Appendix 2.

In the case of water drive, no compression of ODIN and NEF is required to raise the pressure up to FRIGG gas pressure. In the case of no water drive, compression is required.

A hydrocarbon material balance has been carried out for the sizing case, which corresponds to the start-up year and no water drive in the reservoir. This balance was based on computer simulations for the Slug Catchers CV 1A/CV 210 and for the Condensate/Methanol Separators CV 204/CV 213.

The sizing case for ODIN methanol/water material balance corresponds to year 1987 and no water drive in the reservoir, while the same material balance for NEF corresponds to year 1984 and no water drive.

The Process Flow Diagrams showing the material balance are attached in Appendix 3.

1.4.2 Description

1.4.2.1 NEF Gas Treatment (Ref. drawing FF 88 00 00 5031 - Appendix 3)

The 16" sea line from NEF which is 17.4 km long, will contain gas, hydrocarbon liquid and methanolated water. The design flowrate is 7.7 MSCM/D, which corresponds to the start-up year and no water drive in the reservoir. The purpose of the methanol, is to prevent hydrate formation in the sea line.

At the arrival on TCP-2, the gas pressure is adjusted by four choke valves (HIC M 210 A/B/C/D), before the fluid enters vessel CV 210 which is the NEF Slug Catcher.

A Pig Receiver, CM 210,, will be used for start-up purposes during dewatering of the sea line. After the start-up period is over, this Pig Receiver will be disconnected and removed.

In vessel CV 210, the gas is separated from the condensate and methanolated water. The operating pressure in the vessel, will vary between the values 14 - 136 bara depending on the reservoir pressure decline and on the time elapsed after start-up. The fluid enters vessel CV 210 which is designed for a pressure of 177.5 bara at 5°C.

In order to get a good separation, the vessel contains internals as inlet diffuser, dixon plates and mist extractor. The diffuser is an inlet device which is mainly used as deflector. Here the primary separation of the liquid and gas takes place. The dixon plates arrangement over the settling section eliminates agitation of the separated liquid. This greatly reduces chances of foaming and the possibility of revaporizing any of the liquid into the gas phase.

12.12

Liquid droplets that will not settle out of the gas stream due to little or no gravity difference between them and the gas phase, will be entrained and carried out of the Slug Catcher with the gas. This is the reason why a mist extractor has been installed near the gas outlet. Small liquid droplets will coalesce and collect and form larger droplets, which will by gravity be drained back into the liquid phase. Thereby the liquid carry over in the gas phase is limited to complete removal of liquid droplets entrainment in the 20 micron range.

The Slug Catcher effluent gas is sent to the NEF Metering Scrubber CV 211, which will later become the compression outlet scrubber if NEF gas compression is required (ref. chapter 1.4.1).

The purpose of this scrubber is to make sure that the gas is maintained in single phase at the metering station.

This vessel will therefore prevent residual water and condensate carry over in the downstream gas line. In addition the scrubber is provided with a wire mesh located at the gas outlet. The liquid content in the gas is thereby reduced such that 95% of the droplets will not exceed 10 micron at the outlet of the vessel. The gas is further sent to the metering station which is located upstream the flow control valves. Here the gas line is split into two separate lines:

One going to compression module A or C, while other goes to compression module B or C.

In order to have a good flow control rangeability, the flow control valves are connected in split range for each of the lines. The normal operation condition for this station, will be one line on manual control, and one line on either pressure or flow control. One thereby obtain a constant pressure for the metering tubes which is important for the metering accuracy. This set up is in conformity with the existing facilities on FRIGG TCP-2 platform.

During normal operating conditions the set point for the flow control valves are such that the flow is equally distributed in the two parallel lines. The reason for this is to have an even distribution of the flow to the main FRIGG compressors 11K01 A/B/C. Normal operating conditions corresponds to compressors 11K01 A/B working, while 11K01 C is used as stand-by.

It may happen, however, that only one of the metering tubes is used, i.e. in case of maintance, calibration etc. Then the total flow will have to go through just one of the tubes, which means that they will have to be designed for a flow rate of 6.4 MSCM/D, which is equal to the average daily production rate.

The liquid hydrocarbons and the methanolated water which is separated from the gas in vessels CV 210 and CV 211, are sent under level control to the condensate separation system (ref. chapter 1.4.2.3). This corresponds to normal operating conditions. In addition the vessel CV 210 is provided with an automatic flush.

Equipment Design Data

CV 210 NEF Slug Catcher

Design pressure177.5 baraDesign temperature50°C / -28°CCapacity7.7 MSCM/DDimensions2400 ID x 9140 T/T

CV 211 NEF Metering Scrubber

Design pressure	177.5 bara
Design temperature	65°C / -28°C NOTE 1
Capacity	7.7 MSCM/D

NEF gas composition, reservoir pressure and production flow rates are given in Appendix 1.

NOTE 1:

The reason why CV 211 has a design temperature of $+65^{\circ}$ C and not $+50^{\circ}$ C, is because the vessel will become the compression outlet scrubber if NEF gas compression is required. Thus the vessel will be part of the future gas compression treatment and must therefore follow the design conditions given for future compressions.

1.4.2.2 ODIN Gas Treatment (Ref. drawing FF 88 00 00 5030 - Appendix 3)

The 20" sea line from ODIN field is 22 km long and will contain gas, condensate and methanolated water. The design flowrate is 11.2 MSCM/D, which corresponds to the start-up year and no water drive in the reservoir. The purpose of the methanol, is to prevent hydrate formation in the sea line.

At design flow this fluid enters the ODIN Slug Catcher CV 1A, which is the existing FRIGG FWKO vessel at 149 bara and 50°C. The operating pressure will, however, vary between the values 11 - 149 bara depending on reservoir pressure decline and time elapsed after start-up. Upstream this Slug Catcher a permanent Pig Receiver CM 201 is provided for the pigs which will be launched from the ODIN platform.

In vessel CV 1A, the gas is spearated from the condensate and methanolated water.

In order to get a good separation, the vessel contains internals as angle iron, baffle plates and mist extractor. The angle iron is an inlet device which is mainly used as deflector. Here the primary separation of the liquid and gas takes place. The baffle arrangements over the settling section eliminates agitation of the separated liquid. This greatly reduces changes of foaming and the possibility of revaporizing any of the liquid into the gas phase.

Liquid droplets that will not settle out of the gas stream due to little or no gravity difference between them and the gas phase, will be entrained and carried out of the Slug Catcher with the gas. This is the reason why a mist extractor has been installed near the gas outlet. Small liquid droplets will coalesce and collect and form larger droplets which will by gravity be drained back into the liquid phase. Thereby the liquid carry over in the gas phase is limited to complete removal of liquid droplets entrainment in the 20 micron range.

The overhead gas is sent to the ODIN Metering Scrubber CV 201, which will later become the compression outlet scrubber if ODIN gas compression is required (ref. chapter 1.4.1).

The purpose of this scrubber is to make sure that the gas is maintained in single phase at the metering station.

This vessel will therefore prevent residual water and condensate carry over in the downstream gas line. In addition the scrubber is provided with a wire mesh located at the gas outlet. The liquid content in the gas is thereby reduced such that 95% of the droplets will not exceed 10 micron at the outlet of the vessel.

The gas is further sent to the metering station which is located upstream the flow control valves. Here the gas line is split into two separate lines:

One going to compression module A or C while other is going to compression module B or C.

In order to have a good flow control rangeability, the flow control valves are connected in split range for each of the lines. The normal operation condition for this station, will be one line of manual control, and one line on either pressure or flow control. One thereby obtain a constant pressure for the metering tubes which is important for the metering accuracy. This set up is in conformity with the existing facilities on FRIGG TCP-2 platform.

During normal operation conditions the set point for the flow control valves are such that the flow is equally distributed in the two parallel lines. The reason for this is to have an even distribution of the flow to the main FRIGG compressors 11KO1 A/B/C. Normal operating conditions corresponds to compressors 11KO1 A/S working, while 11KO1 C is used as stand-by.

It may happen, however, that only one of the metering tubes is used, i.e. in case of maintenance, calibration etc. Then the total flow will have to go through just one of the tubes, which means that they will have to be designed for a flow rate of 10.2 MSCM/D, which is equal to the average daily production rate.

The liquid hydrocarbons and the methanloated water which is separated from the gas in vessels CV 1A and CV 201, are sent under level control to the condensate separation system (ref. chapter 1.4.2.3). This corresponds to normal operation conditions. In adition the vessel CV 1A is provided with an automatic flush valve (LCV V 1A.5), which will open if the liquid level increases to a high level as could be in the case if liquid slug enters the vessel (ref. chapter 1.4.2.10).

Equipment Design Data

CV 1A ODIN Slug Catcher

Design pressure Design temperature Capacity Dimensions 177.5 bara 50°C/ -28°C 11.2 MSCM/D 2388 ID x 9144 T/T

CV 201 ODIN Metering Scrubber

Design pressure	177.5 bara	
Design temperature	65°C/ -28°C	Note 1
Capacity	11.2 MSCM/D	

ODIN gas composition, reservoir pressure and production flow rates are given in Appendix 2.

NOTE 1:

The reason why CV 211 has a design temperature of +65°C and not +50°C, is because the vessel will become the compression outlet scrubber if ODIN gas compression is required. This the vessel will be part of the future gas compression treatment and must therefore follow the design conditions given for future compression.

1.4.2.3 Condensate Separation (Ref. drawing FF 88 00 11 5032 - Appendix 3)

The condensate separation system consists of two independent treatment streams, one for NEF and one for ODIN. The treatment is, however, identical for the two streams.

The liquid effluent from vessel CV1A and CV 201 - having passed through level control valves LCV V1A.1 and LCV V201.1 respectively - feeds the heat exchanger CE 203 at a weight flowrate equal to 3382 kh/hr. In the same manner the liquid effluent from vessel CV 210 and CV 211 - having passed through level control valves LCV V210.1 and LCV V211.1 respectively - feeds the heat exchanger CE 211 at a weight flowrate equal to 2177 kg/hr.

CE 203 is the Condensate Heater for the ODIN stream and CE 211 is the Condensate Heater for the NEF stream. Here the liquid - which is a mixture of condensate and methanolated water - is heated up from 2°C to 20°C at 20 bara. Triethylene glycol (TEG) solution is used as heating medium (ref. chapter 1.4.2.5).

The condensate heaters are shell and tube heat exchanger, where condensate and methanolated water are going on the tube side and TEG on the shell side. The reason for the heaters, is to speed up the rate of separation between the gas and liquid in the three phase separators downstream the heat exchangers.

The ODIN liquid stream is further sent to Condensate/Methanol Separator CV 204, and the NEF stream is sent to Condensate/Methanol Separator CV 213, operating at 20°C and 20 bara. The hydrocarbon condensate and the methanolated water are separated. The effluent gas which is produced due to the pressure drop across level control valves LCV V1A.1 and LCV V 210.1 respectively, is sent to the LP vent system under pressure control (ref. chapter 1.4.2.8).

The vessels are provided with wire mesh a the gas outlet to remove liquid droplets in the 20 micron range.

The condensate is sent under level control to the existing vessels CV 3 or V 3 after being metered, before it is injected into the main FRIGG gas, transportation system. Total flow of condensate equals $4.2 \text{ m}^3/\text{hr}$. The metering device is located just upstream the level control valves LCV V 204.4/LCV 213.4

Since the condensate from ODIN/NEF fields is being mixed with that from the existing production facilities, it will be necessary to provide acceptably accurate metering systems on the condensate outlet lines from CV 204 and CV 213, so that the condensate production of each field can be determined. The accuracy of these systems must be at least equal to that of the existing systems installed on TCP-2. This is necessary because the condensate production from the Frigg Field will be determined by subtracting the ODIN and NEF quantities from the total flow injected into the pipe line. Each condensate stream will consist of three meters. Two of these will be installed such that the flow may be passed through either meter. The third meter will be installed down stream of these two meters. Each meter will be installed with isolating block valves and drain/bleed valves to enable a meter to be removed without a complete shut down. The series meter will be fit with a bypass loop to enable it to be removed for servicing or checking.

The methanolated water from vessel CV 204 and CV 213 - which is located at a lower level than the condensate due to the difference in specific gravity - ties into one common line and is sent to the methanolated water system (ref. chapter 1.4.2.4).

Fuel gas injection is provided as blanketing gas in order to prevent a pressure decrease in the vessels (ref. chapter 1.4.2.9.1).

Equipment Design Conditions

CE 203 ODIN Condensate Heater

Shel1	side	0	pressure temperature	25 bara 107°C	

Tube sideDesign pressure177.5 baraDesign temperature107°C

CE 211 NEF Condensate Heater

- Shell side Design pressure 25 bara Design temperature 107°C
- Tube sideDesign pressure177.5 baraDesign temperature107°C

CV 204 ODIN Condensate / Methanol Separator

Design pressure	25 bara
Design temperature	50°C 2
Capacity	3.1 m ³
Dimensions	1000 ID x 4000 T/T

CV 213 NEF Condensate / Methanol Separator

Identical to vessel CV 204

1.4.2.4. Methanolated Water System (Ref. drawings FF 88 00 10 5033

FF 88 00 10 5033 FF 83 00 54 5101 FF 88 00 00 5034 -Appendix 3)

The methanolated water disposal system is common to NEF and ODIN. This methanolated water which has been separated from the condensate in vessels CV 204/CV 213, is sent to the Methanolated Water Flash Drum CV 220 which operates at 10 bara and 20°C.

The actual liquid flowrate corresponds to $2.2 \text{ m}^3/\text{hr}$. The flash gas which is created due to the pressure decrease, goes to the LP vent system under pressure control. A wire mesh is installed at the gas outlet to remove liquid droplets in the 20 micron range. Fuel gas is used as blanketing gas in case of a pressure decrease in the vessel.

The methanolated water which contains about 14 litres of liquid condensate per hour, is skimmed in vessel CV 220. The flash drum is divided into two independent chambers, one for the methanolated water and one for the condensate. The condensate which has the lowest specific gravity will be located above the methanolated water phase and flows to the condensate part of the vessel. The liquid hydrocarbon is further sent by a level control valve to the oil skimmer CV 5, which is part of the existing condensate recovery system.

The methanolated water is flowing under level control from vessel CV 220 to DP-2 in a 4" existing sea line. A metering device is located just upstream the LCV V 220.1 on TCP-2 platform. The liquid enters the DP-2 platform at 4 bara and passes through a 10 micron filter bag before it is injected into well No. 22.

Just downstream these filters (FA 106 A/B) a pressure control valve PCV 260 is installed. This valve controls the backpressure in the system, and protects the upstream pipeline and sealine from having vacuum conditions due to siphoning in the downflow piping. Downstream the pressure control valve, the minimum pressure could be equal to the vapour pressure of methanolated water at 5°C which is 0.008 bara.

This pressure could also exist in the filters if the well is not shut off when the injection is stopped. The filters have, however, been designed for this minimum pressure.

In addition to the above mentioned protections, a pressure switch PSL M 9.3 is installed on TCP-2. This switch will close valve ESDV M 9.2 on TCP-2 and ROV 223 on DP-2, thereby isolating the sea line upon low pressure in this line (i.e. in case of a rupture in the sea line).

If the injection well is closed, in case of work over, shut down etc., the ESDV M 9.2 will be closed and the liquid is sent to the CV 9 Methanolated Water Storage Tank. This tank has earlier been used as a triethylene glycol (TEG) storage tank, but the connections with the glycol facilities will be obsolete and disconnected. The capacity of the storage tank, which is 100 m^3 , is suitable for approx. 45 hours production at normal flowrate (2.2 m³/hr).

When injection into well No. 22 becomes possible, the methanolated water is pumped from CV 9 to DP-2, using Methanolated Water Injection Pumps CP 222 A/B. This line ties into the 2" line from vessel CV 220 downstream the metering device FQ V 220.1 A/B.

Inhibitor injection into the methanolated water line going to DP-2 is possible using Inhibitor Pumps CP 225 A/B. These pumps take suction from Inhibitor Drums CV 225 A/B which are operating at atmopheric conditions. The inhibitor is injected upstream the ESDV M 9.2.

Equipment Design Conditions

CV 220 Methanolated Water Flash Drum

Design pressure	16.2 bara
Design temperature	50°C
Capacity	3.05 M ³
Dimensions	900 ID x 2900 T/T

1.4.2.5 Triethylene Glycol (TEG) System (Ref. drawing FF 88 00 00 5034 -Appendix 3)

Hot TEG loop will be used to increase the temperature of the condensate and methanolated water from 2°C to 20°C. The hot glycol is pumped through TEG Circulation Pumps CP 220 A/B/C. These pumps takes suction from Glycol Surge Tanks CV 17 A, B or C, which are existing vessels operating at 2.0 bara, and the glycol is returned back to the same vessel. The reason for this is to have control with the liquid level in the tank, thus preventing it from being overfilled. In addition a level switch is installed which will give an alarm in the control room, upon high liquid level in the vessel.

During normal operating conditions, the glycol inlet temperature to CV 17 from the reboiler section is 80° C. The surge drum that is heating condensate and methanolated water, will however have an equilibrium tempeature of 58° C.

This hot glycol passes through the heat exchangers CE 203/CE 211 on the shell side and exchange heat with the liquid which is on the tube side. The temperature for the TEG solution decreases from $58^{\circ}C$ to $52^{\circ}C$, and is sent back to the surge tank CV 17.

As vessel CV 9 will be used as methanolated water storage tank (ref. chapter 1.4.2.4), it will not be possible to send TEG from CV 9 to CV 17 A/B/C using the glycol fill header. This function is achieved using Glycol Fill Pumps P 13 A/B which takes suction from Glycol Storage Tank V 9 located on TP-1.

If it is required to empty any of the glycol surge drums (in case of accident, work-over, etc.) the vessel will be drained using Glycol Fill Pumps CP 13 A/B. The load of these pumps are provided by the liquid height in the glycol drain header. The pumps are manually stopped according to the level in CV 17. The remaining TEG is drained by gravity to the Methanolated Water Drainage Tank CV 222.

Equipment Design Conditions

CP 220 A/B/C TEG Circulation Pumps

Design pressure 25 bara Design temperature 107°C

CP 13 A/B Glycol Fill Pumps

Design 113.6 1/min. at 3.08 bara

CV 17 A/B/C Glycol Surge Tank

Design pressure3.05 baraDesign temperature107.2°CCapacity21.6 m³Dimensions1980 ID x 6400 T/T

1.4.2.6 Methanol Injection System (Ref. drawing FF 88 00 09 5036 -Appendix 3)

1.4.2.6.1 General

Methanol injection is provided in the ODIN and NEF field streams at the wellhead exit to prevent hydrate formation in the sea lines.

The gas which is separated from the condensate and methanolated water in vessels CV 1A and CV 210, is not any longer in contact with liquid methanol. A small amount of water condensation could therefore initiate formation of hydrates. In order to prevent such a risk, provisions are made for future methanol injection into the gas stream at the outlet of the slug catcher.

1.4.2.6.2 Injection to the Articulated Column on Field Control Station (FCS) for NEF Field.

The methanol stored in Methanol Storage Tank CV 23 - which is an existing tank operating at atmospheric conditions - is sent to NEF articulated platform through a 1 1/2" line using Methanol Injection Pumps CV 12 A/B (already existing). The pump flow rate is manually adjusted according to the needs from the FCS located on NEF.

The flowrate will vary within the following limits:

	Flow rate <u>litres/hr</u> .	m ³ /day	Discharge pressure bara
Mini	8	2.0	-
Normal	275	6.6	7
Max	1000	24.0	22

The capacity of the storage tank CV 23 - which is 100 m^3 - is suitable for 15 days of production at normal flow conditions.

The maximum flow rate, used only for special conditions and during short periods could be provided by the two pumps working in parallel.

1.4.2.6.3 Injection Downstream ODIN and NEF Slug Catchers

Two reciprocating pumps CP 223 A/B - Methanol Injection Pumps can be used to inject methanol in gas lines downstream the Slug Catchers CV 1A/CV 210. These pumps will also take suction from CV 23. This package will be provided later if necessary. Necessary piping stubs are provided for future connections.

Equipment Design Conditions

CV 23 Methanol Storage Tank

Design pressure1.35 bara at 21°CCapacity100 M3Dimensions7300 L x 3550 W x 4000 H

CP 12 A/B Methanol Injection Pumps

0-10³ 1/hr at 153 bars AP

CP 223 Methanol Injection Pumps

Design pressure 177.5 bara Design temperature 21°C.

1.4.2.7 Process Drainage System (Ref. drawing FF 88 00 10 5100 - Appendix 3)

The drainage of the pressure vessels (NEF and ODIN gas treatment) is connected to the existing process drainage on TCP-2.

A methanolated water drainage system is added to drain all low pressure vessels containing methanolated water, i.e. CV 220 -Methanolated Water Flash Drum, CV 204 and CV 213 -Condensate/Methanol Separator. Also the glycol drain header at the suction of the pumps CP 13 A/B - Glycol Fill Pumps - is connected to this system (ref. chapter 1.4.2.5). The drains are gathered into a header going to the Methanolated Water Drainage Tank CV 222. The drainage volume of this tank equals 3.05 m^3 .

A drainage Tank Pump CP 224, is located on the top of the drainage tank. If a high methanolated water level is reached in CV 222, a high level switch LSH V 222.2 will start the pump automatically. This pump discharges into vessel CV 220. In the same manner the pump will be stopped by low level switch LSL V 222.1. In addition the pump can be started and stopped manually.

If the level in the drainage tank should increase to a very high level, the level switch LSHH V 222.3 will give an alarm in the control room for the operator to take the necessary steps to prevent the drainage tank from being overfilled.

The pumping design capacity is equal to $3 \text{ m}^3/\text{hr}$. The time required to empty the vessel (i.e. going from high to low liquid level) will be in the order of 1 hour.

As the volume of vessel CV 220 is equal to the volume of the drainage tank, the following protection has been made to prevent the flash drum from being overfilled: A level switch LSH V 220.6 will automatically stop the pump CP 224, if the level in vessel CV 220 increases to a very high level.

Equipment Design Conditions

CV 222 Methanolated Water Drainage Tank

Design presure3 baraDesign temperature50°CCapacity3.05 M³Dimensions800 ID x 6000 T/T

CP 224

Drainage Tank Pump

Design pressure 16 bara Design temperature 50°C. 1.4.2.8 Flare System (Ref. drawing FF 88 00 04 5090 - Appendix 3)

1.4.2.8.1 General

The flare system for NEF and ODIN consists of:

- Low pressure relief system (LP system)
- High pressure relief system (HP system)
- Low temperature relief system (LT system)

The temperature downstream of the blowdown values can be as low as $-75\degree$ C with an initial upstream temperature of 5 \degree C. Consequently a new flare system is required which can tolerate very low temperatures.

1.4.2.8.2 LP System

The gas release to this system originates from pressure safety valves or breather control valves on equipment containing low pressure process gas or liquid i.e. from:

CV 204 - ODIN Condensate/Methanol Separator CV 220 - Methanolated Water Flash Drum CV 213 - NEF Condensate/Methanol Separator Density Transmitter - Gas Metering.

Maximum relief rate is 0.348 MSCM/D, which corresponds to fire exposure on Pancake 53. The existing LP vent system, having the following design conditions:

max gas relief - 0.503 MSCM/D
design relief - 1.30 MSCM/D

will have sufficient capacity to handle the relief flow rates from low pressure vessels for TCP-2 Extension.

The vents from the above equipment tie into a 10" header which is connected to the existing header C 446 EA 14" V going to LP Vent Scrubber CV 7. Here the liquid phase is sent - via effluent water treatment unit - to the sump caisson under level control and the gas phase is released to the LP vent stack.

1.4.2.8.3 HP System

The gas release to this system originates from fire safety valves on CV 1A - ODIN Slug Catcher, and from depressurization of NEF sea line (ref. chapter 1.4.2.10.2).

The system is existing. The high pressure gases from TCP-2 which have to be flared are collected in the HP headers and sent to CV 24 - HP Relief Scrubber.

The liquid phase is sent - via effluent water treatment unit - to the sump caisson under level control. The gas is sent to the articulated flare.

1.4.2.8.4 LT System

The emergency release to this system originate from:

- Blow down valves on equipment containing high pressure process gas
- Fire safety valves on equipment containing high pressure process gas (except CV 1A)

- Depressurization of ODIN and NEF sea lines.

The flare gas from the different equipment and lines are collected in a 10" header feeding CV 226 LT Relief Scrubber located in Pancake 53. The maximum relief rate is 2.8 MSCM/D, which corresponds to depressurization of the sea lines. Any liquid that may be collected in the Scrubber, is sent under level control to the process drainage system (ref. chapter 1.4.2.7).

The gas evacuates in a 12" line and ties into the existing compression LP vent stack located in Module 33. The capacity in this stack is sufficient to handle the maximum relief rates for the LT Relief System (3.8 MSCM/D and 2.8 MSCM/D respectively).

Equipment Design Conditions

CV 7 LP Vent Scrubber

Design pressure4.46 baraDesign temperature100°CCapacity1.3 MSCM/DDimensions1829 ID x 2483 T/T

CV 24

HP Relief Scrubber - TCP-2

Design pressure59.3 baraDesign temperature-55°CCapacity34 MSCM/DDimensions1662 ID x 4050 T/T

CV 226 LT Relief Scrubber

Design pressure14.2 baraDesign temperature-75°C/100°CCapacity2.8 MSCM/DDimensions1500 ID x 3600 T/T

1.4.2.9 Fuel Gas System (Ref. drawing FF 88 00 02 5040 - Appendix 3)

1.4.2.9.1 Fuel Gas for Blanketing

Fuel gas used as blanketing gas in case of vessel pressure decrease, is provided for the following equipment:

CV 204 - ODIN Condensate/Methanolated Water Separator CV 213 - NEF Condensate/Methanolated Water Separator CV 220 - Methanolated Water Flash Drum.

The fuel gas is taken from the existing fuel gas supply header C 867 EA 4" FG; which comes from the glycol contactors outlet. This fuel gas is treated in the existing cold fraction unit in order to obtain the required dew point. Then it is sent to the CV 17 glycol surge tank, where it is heated up from -25°C to 50°C.

1.4.2.9.2 Fuel Gas Used AS Start Up Gas

The ODIN sea line pressurization will be performed from the ODIN field production platform by progressive opening of one or two choke-valves.

This process cannot be used to pressurize NEF sea line because of the submarine wells which imply that the choke valves have to be located on TCP-2.

A high pressure start up gas line is provided for this purpose.

This gas is taken from the existing fuel gas supply heater C852-EF3"FG (which comes from glycol contactors outlet).

1.4.2.10 Upset Operating Conditions

1.4.2.10.1 Slug Formation

A slug disposal system is provided to handle any slug that enters the TCP-2 platform through the ODIN and NEF sea lines. The Slug Catchers CV 1A/CV 210 level controller is operating with a minimum condensate inventory in order to have a maximum slug receiving capacity.

When a liquid slug enters the slug catchers the liquid level will start increase. Upon high level in the vessels an automatic flush valve LCV V1A.5/LCV V 210.5 will open and send condensate to the condensate slops header which is feeding the existing vessel CV3 operating at 15 bara and 30°C.

The total slug receiving capacity is 31 m^3 for ODIN and 43 m^3 for NEF.

If the liquid level is further increased the slug catchers are provided with very high level switches (LSHH V1A.8 and LSHH V210.8 respectively), which will close the inlets to vessels thus preventing them from being overfilled.

1.4.2.10.2 Depressurization

High pressure process euqipment located in Module 50, is sectionalized by means of ESD valves. In case of an emergency (fire etc.) these valves can be closed upon signal from the control room.

After isolation of the various sections, it is possible to depressurize manually one section (local action on the valve or the whole gas treatment plant (level 2 shut down from QP Central Control Room). Such blowdown valves are installed on the slug catchers CV 1A and CV 210, on the scrubbers CV 201 and CV 211 and on the feed lines upstream the slug catchers.

Total blowdown rate is equal to 1.874 MSCM/D, which is below the design capacity of the LT relief system (3.8 MSCM/D). By depressurizing in this way, one thereby reduces the pressure by removal of gases from high pressure vessels, which elsewhere would be weakened by excessive heating when exposed to fire.

NEF Sea Line Depressurization (Ref. P & ID FF 88 00 00 5031 -Appendix 3)

The NEF sea line blowdown is performed using both the LT relief system and the HP relief system. During the initial blowdown period, i.e. when the pressure in the sea line is greater than 100 bara, the gas will have to be released through the LT relief system. The reason for this is the low temperature of the gas downstream the blowdown valve due to the great pressure drop across the valve. (Temperature down to -75° C can be reached when the gas is depressurized from 160 bara and down to near atmospheric pressure.

In this stage depressurization valve FCV M 210.1 and the manual operated isolation valve HV M 210.3 will be open, while depressurization valve FCV M 210.2 and the manual operated isolation valve HV M 210.4 will be closed. The gas will then pass through to the LT relief system and is further vented to atmosphere in the existing cold vent stack.

A flow switch located at the outlet of the LT relief scrubber CV 226, will prevent the flow rate in the system from exceeding the design flow which is 2.8 MSCM/D.

As the pressure in the sea line decreases to below 100 bara, the temperature downstream of the blowdown valves is such that it is possible to tie into the HP relief system. This is done by opening the depressurization valve FCV M 210.2 and isolation valve HV M 210.4, while the corresponding valves for the LT relief system will be closing. The gas then passes through to the HP relief system and ties into the existing 24" relief header just upstream vessel CV 24 -HP Relief Scrubber.

A temperature switch (TSL M 210.2) and a pressure switch (PS M 210.5) will protect the HP relief system in such a way that it is not possible to change from LT relief to HP relief before the temperature and the pressure are satisfactory (i.e. the pressure upstream of depressurization valves should be equal or lower than 100 bara and the temperature downstream of the isolating valve HV M 210.4 should be equal or higher than -46°C).

The advantage of depressurizing in this way, is that the gas will be flared instead of vented and that the blowdown flow rate can be increased due to the design conditions for the HP relief system (HP relief system is designed for a flaring flow rate equal to 34 MSCM/D).

When the HP relief system is used for depressurization of NEF sea line, the max. flow rate equals 8.4 MSCM/D.

The reason for the value 8.4 MSCM/D is due to limitations on the criteria of flare pipe sizing, which is:

 $pv^2 \leq 100 \ 000 \ \text{kgm/s}^2$ and gas velocity $\leq 0.45 \ \text{Mach}$

A differential pressure transmitter PDT M 210.1 and a differential pressure recorder PDR M 210.1 gives the flaring flow rate.

Initial conditions:

System	:	LT relief	
Pressure	:	160 - 100 bara	
Flow rate	:	2.8 MSCM/D (at	160 bara)

Final conditions:

System : HP relief Pressure : 100 bara --> ODIN sea line depressurization (Ref. P & ID FF 88 00 00 5030 -Appendix 3)

The ODIN sea line will be depressurized from the ODIN platform. Provisions have however been made to depressurize partially the ODIN pipeline from TCP-2 in case of plugging of the line by pigs or other unusual situations.

The blowdown is performed by opening of the choke valve CSP M 201.3. This valve has been calculated to deliver a depressurization flow rate of 2.8 MSCM/D at 160 bara.

As for the NEF blowdown line, the flaring flowrate is measured using a PD-transmitter and a PD-recorder. PDT M 201.1/PDR M 201.1.

1.5 DESCRIPTION OF PROCESS SAFETY SYSTEMS

1.5.1 General Description of Process Safety Systems

All vessels, heat exchangers, pumps and the following lines:

Incoming sealines from NEF/ODIN fields
 Methanol injection line to NEF articulated column
 Methanolated water well injection to DP-2

are protected against undesirable events as described in API Recommended Practice 14C.

For analysis of the process safety systems, references are made to the following documents:

CH-FF 88 00 00 4142 - Safety Analysis Table (SAT) TCP-2 Extension. (Appendix 4)

CH-FF 88 16 00 4143 - TCP-2 Extension - Safety Analysis Function Evaluation Chart Gas and Liquid Treatment. (Appendix 5)

It should be noted that the only exception from API RP 14C, is the fuel gas system. Fuel gas will be used as blanketing gas for vessels CV 204, CV 213 and CV 220 to prevent a pressure decrease. These vessels are protected against leakage by PSL sensors that will shut off incoming feed line, which is a mixture of gas, condensate and methanolated water. The fuel gas inlet to the vessels will however not be shut off by this PSL. The reason for this is that the fuel gas system is protected in the following way:

i) In case of very large leakage:

- Primary protection Gas detectors will initiate a 3rd level shutdown which will stop fuel gas supply.
- Secondary protection The pressure will fall in existing vessel CV 6 - Fuel Gas Scrubber and PSL V6.9 will close fuel gas supply.

ii) In case of small leakage:

1) Primary protection - As above.

 Secondary protection - A PSL sensor actuator and ESDV valve closing the fuel gas supply would be inactive. This is because the fuel gas will try to balance the leakage in order to prevent the pressure from decreasing.

For a functional description of the ESD system ref. is made to document No.: S-FF 88 16 08 9520 attached in Appendix 6. For a description of the process safety system, ref. is made to document No.: S-FF 88 16 08 9521 attached in Appendix 7.

1.5.2 Fire Protection

1.5.2.1 Introduction

All vessels are protected against fire exposure by pressure safety valves.

The calculation assumptions are in accordance with API RP 520 and API RP 521.

1.5.3 Protection Against Process Over Pressure

1.5.3.1 Protection for High Pressure Gas Vessels CV 1A, CV 210, CV 201 and CV 211.

No protection for blocked lines is required for NEF Slug Catcher and Metering Scrubbers.

The reason is that the MAWP, which is 177.5 bara, is higher than the maximum static well head pressure.

For the ODIN Slug Catcher, protection agaist over pressure will be provided in accordance with the final rerating on CV 1A.

1.5.3.2 ODIN Condensate Lines Downstream the ESDV V1A.2 and ESDV V201.3

During normal operating conditions, the pressure in these lines will be 20 bara. In case of high process pressure downstream these ESD valves, the primary protection is the PSH V 204.5. This PSH will close the valves ESDV V1A.2 and ESDV V201.3.

The secondary protection is the PSV V204.1 or PSV V204.2 with a set pressure of 25 bara. These protections are located on the Condensate/Methanol Separator CV 204.

The over pressure sizing case is caused by an uncontrolled flow from the condensate line. The flow rate is calculated based upon full opening of the manual globe valve which bypasses the level control valve LCV VIA.1.

The upstream liquid is supposed to be condensate without methanolated water and the valve calculation gives a volumetric flow rate of 186.1 USGPM or 42.3 m^3/hr . This corresponds to a mass flow rate of 2870 kg/hr.

This fluid enters vessel CV 204, where the vapour released is evacuated through PSV V204.1/2, and further sent to LP Vent Scrubber CV 7 which is an existing equipment.

The PSV valves have been sized for max. release, which is in case of fire.

1.5.3.3 NEF Condensate Lines Downstream the ESDV V210.2 and ESDV V211.3

The preceding description for the ODIN safety protection against over pressure applies to NEF liquid treatment. The assumptions are the same, but the instrument tag numbers are to be changed to:

> ESDV V210.2 ESDV V211.3 PSH V213.5 PSV V213.1 PSV V213.2 LCV V210.1

1.5.3.4 Protection of Methanolated Water System

Protection of Vessel CV 220 - Methanolated Water Flash Drum

At normal conditions, the operating pressure in the vessel is equal to 10 bara. If the pressure by accident increases (as could happen in case of blocked outlet from the vessel or an uncontrolled flow into the vessel), the primary protection is a PSH V220.3 closing the inlet to the vessel. The secondary protection is the PSV V220.1/2 having a set pressure equal to 16.2 bara.

These PSV valves have been sized for max. release which is in case of fire.

Protection of Vessel CV 222 - Methanolated Water Drainage Tank

This vessel is not in continuous service and will only be used for drainage of vessels CV 204, CV 213 and CV 220 (the suction of glycol pumps CP 13 A/B also ties into this system).

The vessel is protected against process over pressure by a vent going to atmosphere. The drainage tank is

Methanolated Water Storage Tank CV 9

The CV 9 - Methanolated water storage tank which is designed at 1.35 bara, was previously used as a glycol storage tank. The protection of this vessel has been modified to take into account the function as methanolated water storage.

This safety protection will be identical to the existing vessel CV 33.

This includes:

- PSV V 9.3 Emergency vent and manhole to relieve internal pressure of the vessel.
- PSV V 9.2 A/B Pressure and vacuum breather valves to relieve internal pressure and vacuum of the vessel during filling or emptying.

1.5.4 Thermal Expansion in CE 203/CE 211

The condensate / methanolated water is heated using the exchangers CE 203/CE 211. At normal conditions the temperature at the outlet of the heaters will be 20°C.

If the temperature of the fluid is increased to a certain value (the value to be defined later), a temperature switch (TSH E 203.5 and TSH E 211.5) will shut off the heating medium which is the TEG solution. These switches are located just downstream the heaters.

Such an excess heat input could happen if the condensate/ methanolated water is allowed to stay within the pipe without being withdrawn. Any pressure built up in the system because of vapour released due to heating, will be evacuated through the pressure control valves PCV V204.2 for the ODIN separator and PCV V213.2 for the NEF separator.

These valves are connected to the LP vent system.

1.5.5 Protection on Shell Side of Condensate Heaters, TEG Lines and Glycol Surge Drums CV 17 A/B/C.

The design pressure on the shell side of the condensate heaters CV 203/CE 211 is 25 bara. The tube side of these heaters are protected by a PSH and two PSVs set at 25 bara, located at downstream components CV 204 and CV 213.

In case of tube side failure, the three phases condensate, gas and methanolated water will leak into the shell side, because the operating pressure is lower than on the tube side (5 bara and 20 bara respectively). From the shell, the fluid enters the glycol piping, which is designed at 25 bara.

The glycol return line will be used as relief system. The condensate, gas and methanolated water are sent to existing vessels CV 17 A/B/C. The gas is evacuated through a 2" existing breather line which leads to the LP vent system. The glycol surge drum design pressure which is 3.05 bara, will not be reached.

Since the only isolation device between the heat exchangers and the vessels are manually block valves which will be locked open, the exchanger and vessel are considered as one unit regarding safety on the process side. A PSV on the shell side of the heaters and on the glycol piping, is therefore not required. The safety protection is made by the existing vent lines C 434/435/436-EA-2"-V.

1.5.6 Pumps Discharge

All outlets of reciprocating pumps are protected by pressure safety valves.

The protection of the outlets of centrifugal pump is not necessary, since the maximum discharge pressure will not exceed the rated working pressure of the piping.

1.6 DESCRIPTION OF GAS RELIEF SYSTEM

1.6.1 General

The flare and relief system consists of:

A low pressure vent system (LP vent system)

- A high pressure relief system (HP relief system)

- A low temperature relief system (LT relief system)

The LP vent system and the HP relief system are existing systems already installed on the Frigg Field.

For the high pressure vessels, the temperature downstream of the blow down valves can reach as low temperature as -75°C with an initial upstream temperature of 5°C.

Consequently it is necessary to connect the relief system to the low temperature system.

1.6.2 Basis of Design

- 1. The LP vent system, HP and LT relief system have been designed in agreement with the guidelines in:
 - API Recommended Practice 14C - API Recommended Practice 520 - API Recommended Practice 521
- 2. The criteria for the flare pipe sizing have been:

a) HP and LT relief lines and headers:

 $\rho V^2 \le 100 \ 000 \ \text{kg/ms}^2$

gas velocity < 0.45 Mach

where

 ρ = gas density kg/m³

V = gas velocity m/s

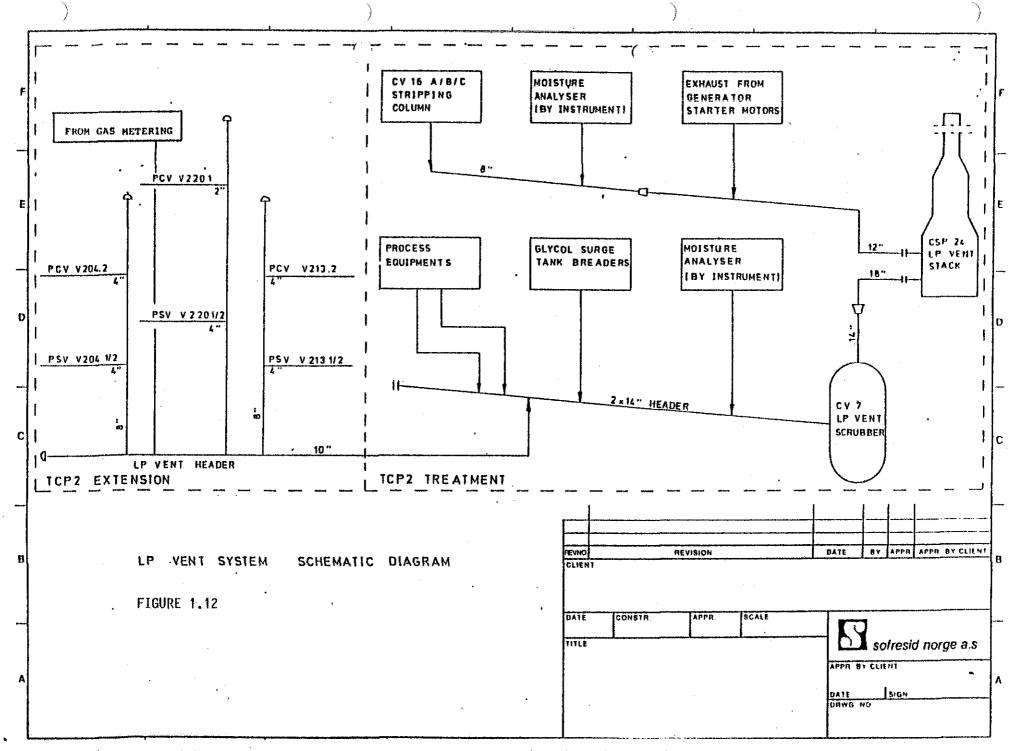
b) LP vent lines and headers:

to be designed for low pressure drop.

1.6.3 Description of the Relief / Vent Systems

1.6.3.1 Low Pressure Vent System

The gas release to this system originates from pressure safety valves or breather control valves on equipment containing low pressure process gas or liquid. The relief gases are collected in a 10" LP vent header. This line is connected to the existing header C 466 EA 14" V, and sent to the LP vent scrubber CV 7.


The liquid phase from this vessel flows to the process drainage system under level control, and the gas phase is released into the existing LP vent stack.

A schematic diagram of this system is given on figure 1.12.

Design Data

Maximum back pressure Piping class EA, flange rating CV 7 scrubber - design pressure	:	2.6 bara 150 1b 4.6 bara
- design temperature Relief Rates TCP-2 Treatment	:	100°C
Max. continuous relief	:	0.059 MSCM/

Max. continuous relief	:	0.059	MSCM/D
Max. gas relief	•	0.53	MSCM/D
Design relief flow rate	:	1.3	MSCM/D

a trata de terres de la contra d

a post of the second second

Relief Rates TCP-2 Extension (Summary)

The relief flow rates are summarized in the following table: PRESSURE RELIEF RATES (MSCM/D) - TCP-2 EXTENSION

	FIRE EXPOSURE PANCAKE	FROM BREATHER CONTROL VALVES
		Note 1
PSV V204.1/2	0.134	
PSV V213.1/2	0.134	
PSV V220.1/2	0.080	
PCV V204.2		0.0063
PCV V213.2		0.0033
PCV V220.1		0.0010
······································	· · ·	
TOTAL RELEASE	0.348	0.0106

Note 1 : Continuous flow rates.

The maximum relief rate corresponds to fire exposure on the pancake, i.e. 0.348 MSCM/D.

Reference is made to chapters 1.6.5 and 1.6.6 for detailed calculations and to Appendix 8 for back pressure calculations.

1.6.3.2 High Pressure Relief System

The gas release to this system orginates from fire safety values on ODIN Slug Catcher CV 1A, and from depressurization of NEF Sea Line (ref. chapter 1.6.4.2.2). The high pressure relief system is existing.

The gases from TCP-2 which have to be flared are collected in the HP headers and sent to the HP Relief Scrubber CV 24.

The liquid phase from CV 24 is sent via an effluent water treatment unit, to the sump caisson under level control.

Gases from CV 24 and V 24 are mixed and further sent to the articulated flare.

Design Data

TCP-2 HP Relief System:

Theoretical maximum back pressure 45 bara at PSV outlet Piping: class ECX Flange rating: 600 lbs temperature: -55°C

CV 24 Scrubber:

design pressure: 59.3 bara design temperature: -55°C

TP-1 HP Relief System:

Piping: class EC Flange rating: 300 lbs

V 24 Scrubber:

design pressure: 49.3 bara design temperature: -50°C

Common Header to Flare:

Sea line to articulated flare: Class ECS

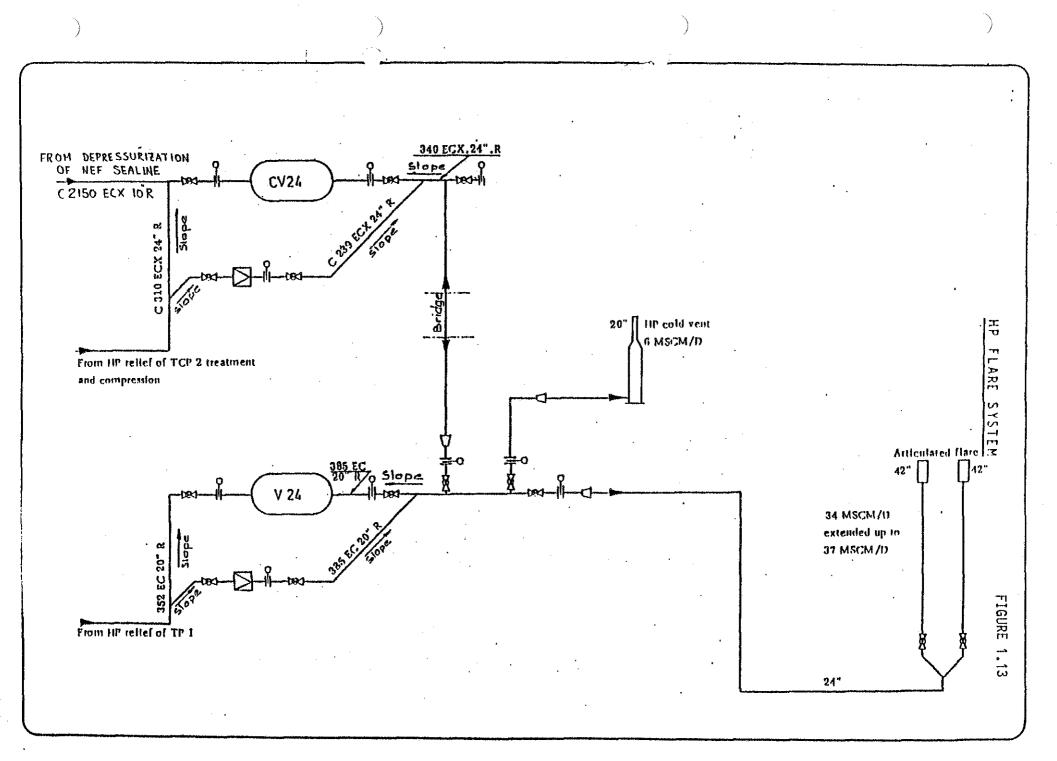
Design Flow Rates:

Articulated flare: 34 MSCM/D

Relief rates TCP-2 Extension:

Fire exposure on vessel CV 1A : 0.45 MSCM/D Depressurization of NEF sea line : 8.40 MSCM/D Maximum back pressure : 17.4 bara

Reference is made to chapters 1.6.4 and 1.6.5 for detailed calculations and Appendix 9 for back calculations.


Regarding heat radiation and dispersion calculations, vibration and noise calculations reference is made to the following documents:

Elf Aquitaine Norge A/S FRIGG FIELD 311E ENG 80/134/TEH/ej HIGH PRESSURE FLARE SYSTEM

SR 99012

INCREASING OF FLARE CAPACITY UP TO 37 MMSCM/D

A schematic diagram of the HP flare system is shown on figure 1.13.

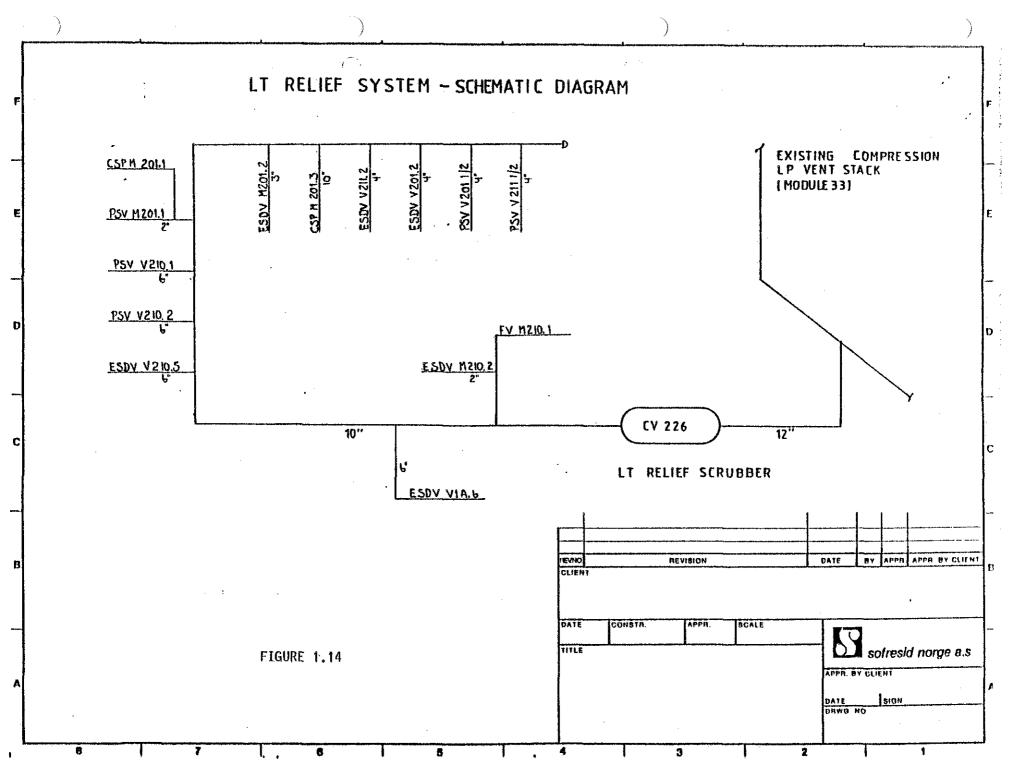
人名法德 医马克氏 网络马克克 法法法法法 网络马拉拉 网络马拉拉马拉马拉马拉马拉马拉 网络加尔马拉马 机动力 化乙基乙基乙基乙基乙基乙基乙基乙基乙基乙基乙基

1.6.3.3 Low Temperature Relief System

1.6.3.3.1 System Description

The emergency releases to this system originate from:

- Blow down valves on equipment containing high pressure process gas.
- Fire safety valves on equipment containing high pressure process gas (except for vessel CV 1A).


For piping simplification it has been chosen to connect the two above systems into the same low temperature relief header.

This 10" header feeds the CV 226 scrubber located in Pancake 53. The liquid from this vessel is sent to the drainage system under level control, and the gas is released through a 12" pipeline into the existing LP vent stack for TCP-2 Compression, located in Module 33.

A schematic diagram of this system is shown on figure 1.14.

Design Data

Maximum back pressure	:	5.7 bara
Piping: Class EAT	Flange rating:	150 lbs
CV 226 Scrubber -	design pressure : design temperature:	14.2 bara 100°C to - 75°C

فتحريفها والأحداث الرباب الربي فأترار الأراب والمركب المعتريفية والمربعين بدائلة والمراجعة بعدادات ويطرف والرار

「「「「「「」」「「」」「「」」」」となったもの。 私になったなほかで

Relief Rates (Summary)

- No continuous flow rate.

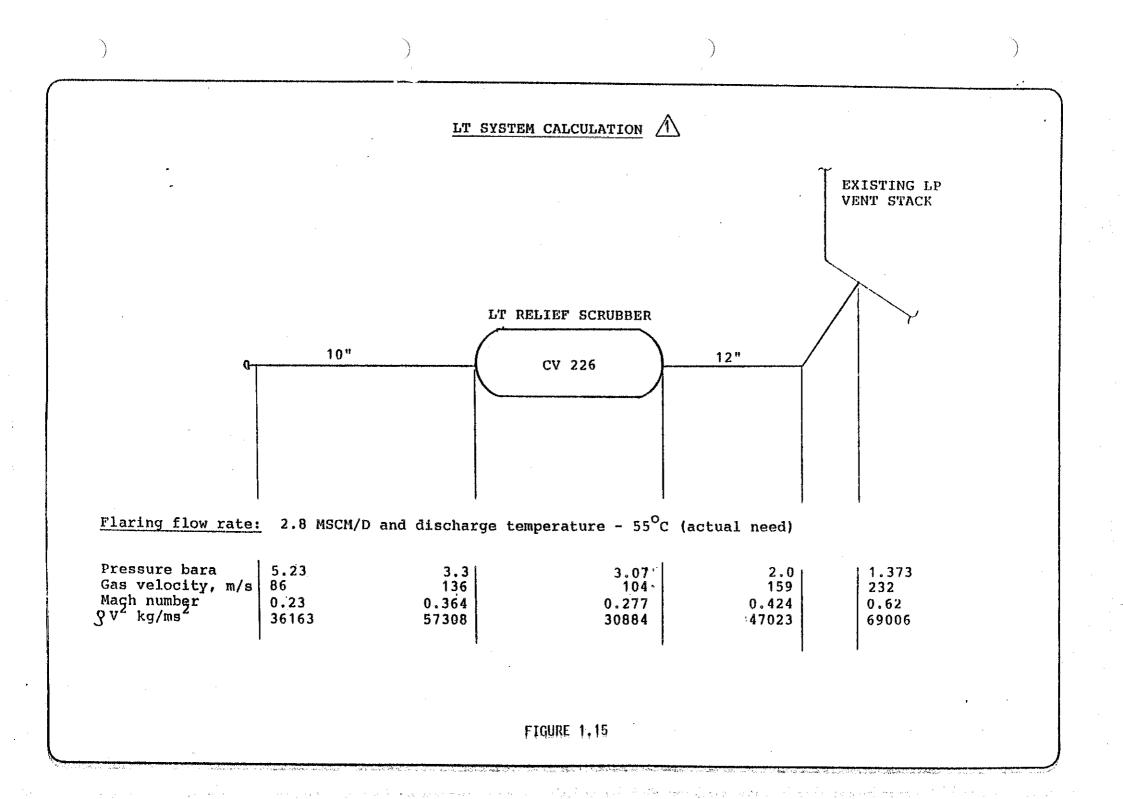
- Flaring flow rates are summarized in the following table:

PRESSURE RELIEF RATES (MSCM/D) - TCP-2 EXTENSION

·	ODIN Fire Exposure	NEF Fire Exposure	Blow Down Group W	ODIN Sea Line Depressurization	NEF Sea Line Depressurization
PSV V201.1/2	.656 (1)				
PSV V210.1/2	• - •	.489			
PSV V211.1/2		.319 (1)			
PSV M201.1	.050				
ESDV M201.2			.203		
ESDV M210.2			.064		
ESDV V1A6			.546		
ESDV V201.2 ESDV V210.5			.246 .546		
ESDV V210.5			.269		
CSP M201.3			.209	2.8 (1)	
FV M210.1				2.0 (1)	2.8 (1)
	······				
TOTAL RELEASE	.706	.808	1.874	2.8	2.8

The maximum relief rate corresponds to depressurization of the sea lines.

Design relief rate : 2.8 MSCM/D


1.6.3.3.2 Calculation Summary

A calculation summary for the LT relief system, is shown on table 1.15. It gives the pressure, gas velocity, Mach number and gV^2 at different locations in the system.

Reference is made to chapters 1.6.4, 1.6.5 and 1.6.6 for detailed calculations. Back pressure calculations are given in Appendix 9.

Regarding heat radiation and dispersion calculations, vibration and noise calculations, reference is made to the following document:

Elf Aquitaine Norge A/S	TCP-2 Compression
311E ENG 80/407/TEH/ih	RELIEF AND FLARE SYSTEM

1.6.4 Depressurization of High Pressure Vessels, Lines and Sea Lines

1.6.4.1 Depressurization of High Pressure Vessels and Lines

1.6.4.1.1 Introduction

High pressure process equipment located in Module 50, are sectionalized by means of ESD valves.

In case of an emergency (fire etc.) these valves can be closed upon signal from the control room.

After isolation of the various sections, it is possible to depressurize manually these sections or the whole treatment plant from the control room.

By doing this, one thereby reduce the pressure by removal of gases from the high pressure vessels and lines. This equipment would elsewhere be weakened by excessive heating when exposed to fire.

All blow down valves are connected to the LT relief system.

1.6.4.1.2 Basis for Calculations

A. Blow Down Flow Rates

The calculation method is based on the fact that:

- The back pressure is low enough to ensure a critical flow rate through the blow down valves.
- The change of the temperature and the compressibility factor inside the equipment during the decompression period is not considered.

The blow down formula is:

Wo = $Po \frac{MW \times V}{ZRT} \frac{1}{tf} LN \frac{Po}{Pf}$

Wo : Initial flow ratekg/hrPo : Initial pressure160 baPf : Residual pressure8 baratf : Depressurization timehrMW : Molecular weight16.9 kZ : Compressibility factor0.73 (T : Initial vessel temperature278 KR : .0831 with bara, m³, K, kmolekgV : System volumem³

kg/hr 160 bara 8 bara (100 psig) hr 16.9 kg/kmole 0.73 (at 160 bara 5°C) 278°K kg m³ B. Temperature Downstream of the Blow Down Valves

The method used to calculate the temperature downstream of the blow down valves, is based upon the guidelines given in GPSA Engineering Data Book, Section 17.

The assumptions made are as follows:

Upstream pressure 160 bara Downstream pressure 2 bara Upstream temperature 5°C ODIN gas is taken as the relief composition

Calculation results are given in Appendix 10. Here it can be concluded that the temperature downstream of the blow down valves will be $-75\degree$ C.

1.6.4.1.3 Calculation Results

The valves below are connected to the ESD system and depressurize the high pressure lines and vessels.

ITEM	System	Initial Blow Down Flow		
(1)	Vglume m ³ (2)	kg/hr	MSCM/D	
SDV M201.2	19	6.083	.203	
DV V1A.6	51	16.330	.546	
SDV V201.2	23	7.364	.246	
SDV M210.2	6	1.921	.064	
SDV M210.5	51	16.330	.546	
SDV V211.2	13	8.062	.269	

Depressurization time (1) : 1.5 hrs (90 mins)

.....

(1) Identical to TCP-2 Treatment Plant

(2) System Volume = Vessel Volume + Line Volume between ESDV

Total initial blow down rate : 1.874 MSCM/D

1.6.4.2 Sea Line Depressurization

1.6.4.2.1 Introduction

The sea lines blow down is not connected to the ESD system. This blow down is a voluntary action which is performed when the operating conditions and valve positions are satisfied, and which can be stopped at any time if necessary.

1.6.4.2.2 NEF Sea Line Depressurization (Ref. P & ID FF 88 00 00 5031 - Appendix 3)

The NEF sea line blow down is performed using both the LT relief system and the HP relief system. During the initial blow down period, i.e. when the pressure in the sea line is greater than 100 bara, the gas will have to be released through the LT relief system. The reason for this is the low temperature of the gas downstream the blow down valve due to the great pressure drop across the valve. (Temperature down to -75° C can be reached when the gas is depressurized from 160 bara and down to near atmospheric pressure).

In this stage depressurization valve FCV M210.1 and the manual operated isolation valve HV M210.3 will be open, while depressurization valve FCV M210.2 and the manual operated isolation valve HV M210.4 will be closed. The gas will then pass through to the LT relief system and is further vented to atmosphere in the existing cold vent stack.

A flow switch located at the outlet of the LT relief scrubber CV 226, will prevent the flow rate in the system from exceeding the design flow which is 2.8 MSCM/D.

As the pressure in the sea line decreases to below 100 bara, the temperature downstream of the blow down valves is such that it is possible to tie into the HP relief system. This is done by opening the depressurization valve FCV M210.2 and isolation valve HV M210.4, while corresponding valves for the LT relief system will be closing. The gas then passes through to the HP relief system and ties into the existing 24" relief header just upstream vessel CV 24 - HP Relief Scrubber.

A temperature switch (TSL M210.2) and a pressure switch (PSL M210.5) will protect the HP relief system in such a way that it is not possible to change from LT relief to HP relief before the temperature and the pressure are satisfactory (i.e. the pressure upstream of depressurization valves should be equal or lower than 100 bara and the temperature downstream of the isolating valve HV M210.4 should be equal or higher than -40° C).

The advantage of depressurizing in this way, is that the gas will be flared instead of vented and that the blow down flow rate can be increased due to the design conditions for the HP relief system (HP relief system is designed for a flaring flow rate equal to 34 MSCM/D). When the HP relief system is used for depressurization of NEF sea line, the max. flow rate equals 8.4 MSCM/D from TCP-2 Extension area. The reason for this value is due to limitation on the criteria of flare pipe sizing, which is:

 $\int v^2 \le 100\ 000\ \text{kgm/s}^2$ and gas velocity < 0.45 Mach

A differentital pressure transmitter PDT M210.1, and a differential pressure recorder PDR M210.1 gives the flaring flow rate.

Initial conditions:

System	:	LT relief
Pressure	:	160 - 100 bara
Flow rate	:	2.8 MSCM/D

Final conditions:

System	:	HP relief
Pressure	:	100 bara and below
Flow rate	:	8.4 MSCM/D

System Protection

Protection during blow down of NEF sea line is achieved as follows:

Before any depressurization of NEF sea line is possible, an authorization signal will have to be given from CCR. Protection during blow down of this sea line is achieved as follows:

During the initial stage of blow down when the LT relief system is used, the released gas will be through valve FCV M210.1. This depressurization valve is opened by HIC M210.1 which is locally located, and it has been sized to pass 2.8 MSCM/D at 110 bara inlet pressure with 90% lift.

The flow to the LT relief, is measured by two annubar elements located downstream of vessel CV 226. Protection against excessive flow is by means of FSH V226.2, which will be set at design flow, i.e. 2.8 MSCM/D. If the flow by some means should exceed the design flow, the FSH will close valve FCV M210.1, thereby stopping the blow down of sea line. Before depressurization again is possible, a new authorization signal will have to be given from CCR.

Once the sea line pressure is at 100 bara, the PSL M210.5 provides permissive signal which together with a CCR authorization to use the HP flare system, enables the FCV M210.2 to be opened by HIC M210.2. This HIC is locally mounted. FCV M210.2 is sized for 8.4 MSCM/D at 100 bara inlet and 60% lift. Protection against malfunction of the HP relief system is:

- 1) PSL M210.5 which will not pass any gas through to the HP relief before the pressure is less or equal to 100 bara.
- TSL M210.2 protects the HP relief piping (class ECX) from too low a temperature. This means that FCV M210.2 will close if the temperature in the piping system is less than -40°C.

Further protection is given by the overreading authorization signal from CCR. This applies to both systems. The flow to either system is measured by means of a pitot tube in line C2131 EFT 6" R. The status of the system will be monitored by means of position switches on the manual isolating valves HV M210.3 and HV M210.4, which will give indication in the CCR about which system that is in operation.

1.6.4.2.3 ODIN Sea Line Depressurization (Ref. PID FF 88 00 00 5030 -Appendix 3)

The ODIN Sea Line will be depressurized from the ODIN platform. Provisions have however been made to depressurize partially the ODIN pipeline from TCP-2 in case of plugging of the line by pigs or other unusual situations.

The blow down is performed by opening of the choke valve CSPM 201.3. This valve has been calculated to deliver a depressurization flow rate of 2.8 MSCM/D at 160 bara.

As for the NEF blow down line, the flaring flow rate is measured using a PD-transmitter and a PD-recorder:

PDT M201.1/PDR M201.1

1.6.5 Fire Protection

. F.-

1.6.5.1 Introduction

All vessels are protected against fire exposure by pressure safety valves.

The calculation assumptions are in accordance with API RP 520 and API RP 521.

1.6.5.2 Liquid Vapourization Risk

Main assumptions:

- Vessels are not insulated which means that F = 1 in the formula:

 $0 = 2100 \times F \times A^{0.82}$

Q = total heat absorption (input) to the wetted surface

A = total wetted surface

- The maximum liquid level (LSHH) is used to calculate the wetted surface.
- The total heat input is used as latent heat of vapourization.
- The condensate heat of vapourization is 72 kcal/kg and the relieved vapour is gas of molecular weight 16.9.
- The calculations for the vessels are shown in Appendix 11.

1.6.5.3 Gas Expansion Risk

The following calculations are applicable to CV 201 and CV 211.

They consider a total exposed area which includes the vessel itself plus surrounding pipe lines.

The calculations of the gas flow rates to be relieved are in accordance with the API 520:

The calculations are shown in Appendix 11.

1.6.5.4 Calculation Results

Table 1.16 summarizes the flaring flow rates due to fire exposure.

TABLE 1.16

FIRE PROTECTION

) Relief Device	1) Fire Risk	Wetted Area m ²	Total Exposed area m ²	Total Heat Absorption Kcal/Hr	Mass Flow Rate Kg/Hr	Standard Flow Rate MSCM/D	2) Flare System
PSV CV 1A 6/7	L.V.		· · · · · · · · · · · · · · · · · · ·	970.200	13.475	0.450	H.P.
PSV CV 201 1/2 1)	G.E.	-	104	5701200	19.506	0.656	L.T.
PSV CV 204 1/2	L.V.	11.8		286.500	3.978	0.134	L.P.
PSV CV 210 1/2	Ĺ.V.	60	-	1.048.000	14.550	0.489	L.T.
PSV CV 211 1/2 1)	G.E.	_	51		9.482	0.319	L.T.
PSV CV 213 1/2	L.V.	11.8		286.500	3.978	0.134	L.P.
PSV CV 220 1/2	L.V.	6.6		174.400	2.424	0.080	L.P.
PSV CM 201 1	L.V.	3.5		102.600	1.425	0.050	L.T.

(1) Fire Risk

L.V. = Liquid vapourization G.E. = Gas expansion

(2) Flare System L.P. = Low pressure
L.T. = Low temperature
H.P. = High pressure

(3) The PSV CV 1A 6/7 are existing equipment.

FIRE PROTECTION - CONTINUED

Relief Device	Set Pressure barg	Relieving Pressure bara (Note 1)	Temp. Upstream Valve °C (Note 2)	Temp. Drop across Valve °C	Max. Back Pressure barg.
PSV CV 1A 6/7	176.5	195.15		64	44
PSV CV 201 1/2	176.5	195.15	94	64	4.7
PSV CV 204 1/2	24.0	27.4	149	14	1.0
PSV CV 210 1/2	176.5	195.15	129	49	4.7
PSV CV 211 1/2	176.5	195.15	129	49	4.7
PSV CV 213 1/2	24.0	27.4	149	14	1.0
PSV CV 220 1/2	15.2	17.72	246 (2)	8	1.0
PSV CM 201 1	176.5	195.15	94	64	4.7

Note 1 : Relieve pressure = set pressure + over pressure + 1 where over pressure equals 10% of set pressure.

P1

Note 2 : Temp. upstream valve is determined from the relationship $T_1 = \overline{P_n}$. T_n

where P_1 = relieve pressure, bara

- $T_1 = relieve temperature, °K$
- P_n = normal operating pressure, bara
- T_n = normal operating temperature, °K

.

1.6.6 Protection Against Process Over Pressure

1.6.6.1 Protection for High Pressure Gas Vessels CV 1A, CV 210, CV 201 and CV 211

> No protection for blocked lines is required for NEF Slug Catcher and Metering Scrubbers.

> The reason is that the MAWP, which is 177.5 bara, is higher than the maximum static well head pressure.

> For the ODIN Slug Catcher, protection against over pressure will be provided in accordance with the final rerating on CV 1A.

1.6.6.2 ODIN Condensate Lines Downstream the ESDV V1A.2 and ESDV V201.3

1.6.6.2.1 Description

During normal operating conditions, the pressure in these lines will be 20 bara. In case of high process pressure downstream these ESD valves, the primary protection is the PSH V204.5. The PSH will close the valves ESDV V1A.2 and ESDV V201.3.

The secondary protection is the PSV V204.1 or PSV V204.2 with a set pressure of 25 bara. These protections are located on the Condensate/Methanol Separator CV 204.

The over pressure sizing case is caused by an uncontrolled flow from the condensate line. The flow rate is calculated based upon full opening of the manual globe valve which bypasses the level control valve LCV VIA.1.

1.6.6.2.2 Calculation Results

Basis Calculation Formula:

Q = CV V A P/G

Q = Flow rate, USGPM

CV = Liquid sizing coefficient

P = Max. allowable differential pressure, psi

G = Specific gravity (water = 1.0)

Bypass valve (1" globe valve)	:	CV = 3.5
Upstream pressure	:	149 bara
Downstream pressure	:	20 bara
Specific gravity	:	0.662

The upstream liquid is supposed to be condensate without methanolated water and the valve calculation gives a volumetric flow rate of 186.1 USGPM or 42.3 m³/hr. This corresponds to a mass flow rate of 28070 kg/hr.

This fluid enters vessel CV 204, where the vapour released is evacuated through PSV V204.1/2. Maximum vapour flow rate is 2378 kg/hr, which is found by taking the ratio of normal operating gas flow to normal operating gas plus liquid condensate flow and multiply by 28070. This maximum gas flow is less than the figure given in Chapter 5 for Fire Exposure, which is 3978 kg/hr.

The gas is further sent to LP Vent Scrubber CV 7, which is an existing equipment (Ref. Schematic Diagram in Chapter 1.6.3).

1.6.6.3 NEF Condensate Lines Downstream the ESDV V210.2 and ESDV V211.3

1.6.6.3.1 Description

The preceeding description of the ODIN safety protection against over pressure applies to NEF liquid treatment. The assumptions are the same, but the instrument tag numbers are to be changed to:

> ESDV V210.2 ESDV V211.3 PSH V213.5 PSV V213.1 PSV V213.2 LCV V210.1

1.6.6.3.2 Calculation Results

Basis

Bypass valve (1" globe valve): CV 3.5Upstream pressure: 136 baraDownstream pressure: 20 baraSpecific gravity: 0.663

This corresponds to a mass flow rate of 26550 kg/hr.

The vapour released through PSV V213.1/2 is 2063 kg/hr, which is less than the gas released in case of fire exposure, which is 3978 kg/hr. (Ref. is made to chapter 1.6.5).

1.6.6.4 Thermal Expansion in CE 203 / CE 211

The condensate/methanolated water is heated using the exchangers CE 203/CE 211. At normal conditions the temperature at the outlet of the heaters will be 20°C.

If the temperature of the fluid is increased to a certain value (the value to be defined later), a temperature switch (TSH E203.5 and TSH E211.5) will shut off the heating medium which is the TEG solution. These switches are located just downstream the heaters.

Such an excess heat input could happen if the condensate/ methanolated water is allowed to stay within the pipe without being withdrawn. Any pressure built up in the system because of vapour released due to heating, will be evacuated through the pressure control valves PCV V204.2 for the ODIN separator and PCV V213.2 for the NEF separator.

These valves are connected to the LP vent system.

1.6.6.5 Protection of Methanolated Water System

1.6.6.5.1 Protection of Vessel CV 220 - Methanolated Water Flash Drum

At normal conditions, the operating pressure in the vessel is equal to 10 bara. If the pressure by accident increases (as could happen in case of blocked outlet from the vessel or an uncontrolled flow into the vessel), the primary protection is a PSH V220.3. closing the inlet to the vessel. The secondary protection is the PSV V220.1/2 having a set pressure equal to 16.2 bara.

These PSV valves have been sized for max. release which is in case of fire (Ref. chapter 1.6.5).

1.6.6.5.2 Protection of Vessel CV 222 - Methanolated Water Drainage Tank

This vessel is not in continuous service and will only be used for drainage of vessels CV 204, CV 213 and CV 220 (the suction of glycol pumps CP 13 A/B also ties into this system).

The vessel is protected against process over pressure by a vent going to atmosphere. The drainage tank is operated at atmospheric conditions.

1.6.6.6 Protection on Shell Side of Condensate Heaters, TEG Lines and Glycol Surge Drums CV 17 A/B/C

The design pressure on the shell side of the condensate heaters CV 203/CE 211 is 25 bara. The tube side of these heaters are protected by a PSH and two PSVs set at 25 bara, located at downstream components CV 204 and CV 213.

In case of tube side failure, the three phases condensate, gas and methanolated water will leak into the shell side, because the operating pressure is lower than the tube side (5 bara and 20 bara respectively). From the shell, the fluid enters the glycol piping, which is designed at 25 bara.

The glycol return line will be used as relief system. The condensate, gas and methanolated water are sent to existing vessels CV 17 A/B/C. The gas is evacuated through a 2" existing breather line which leads to the LP vent system. The glycol surge drum design pressure which is 3.05 bara, will not be reached (Ref. Appendix 12).

Since the only isolation device between the heat exchanger and the vessels are manually block valves which will be locked open, the exchanger and vessel are considered as one unit regarding safety on the process side. A PSV on the shell side of the heaters and on the glycol piping, is therefore not required. The safety protection is made by the existing vent lines C 434/435/436-EA-2"-V.

1.6.6.7 Methanolated Water Storage Tank CV 9

The CV 9 - Methanolated water storage tank which is designed at 1.35 bara, was previously used as a glycol storage tank. The protection of this vessel has been modified to take into account the function as methanolated water storage.

This safety protection will be identical to the existing vessel CV 33.

This includes:

- PSV V9.3 : Emergency vent and manhole to relieve internal pressure of the vessel.
- PSV V9.2 A/B : Pressure and vacuum breather valves to relieve internal pressure and vacuum of the vessel during filling or emptying.

1.6.6.8 Pumps Discharge

All the outlets of reciprocating pumps are protected by pressure safety valves.

The protection of the outlets of centrifugal pump is not necessary, since the maximum discharge pressure will not exceed the rated working pressure of the piping.

1.7 GENERAL DRAWING LIST

1.7.1 General Drawings

The main Process Flowsheets, P. & I.D.s and Plot Plans/General Arrangement drawings are:

1.7.1.1 Process Flowsheets - Schematic Drawings

FF	88	00	00	0102	Schematic Process Diagram
FF	88	00	00	5100	Process Flowsheet - Gas Treatment
FF	88	00	00	5101	Process Flowsheet - Liquid Treatment
FF	88	00	00	0901	NEF and ODIN ESDV and Flare Systems Schematic Diagram

1.7.1.2 Process / Utilities Drawings - PIDs

F	F 88	00	00	5030	Odin Gas Treatment - Separation
F	F 88	00	00	5031	North East Frigg Gas Treatment - Separation
F	F 88	00	11	5032	NEF and ODIN Liquid Treatment - Condensate Separation
F	F 88	00	10	5033	NEF and ODIN Liquid Treatment - Methanolated Water
·F	F 88	00	00	5034	NEF and ODIN Liquid Treatment - TEG and MW Facilities
F	F 88	00	54	5101	NEF and ODIN Liquid Treatment - Methanolated Water Injection DP-2
F	F 88	00	04	5090	NEF and ODIN Treatment - Flare System
F	F 88	00	09	5036	NEF and ODIN Treatment - Methanol Injections
F	F 88	00	10	5100	NEF and ODIN Treatment - Process Drainage System
F	F 88	00	02	5040	NEF and ODIN Treatment - Fuel Gas System
F	F 88	00	00	0300	NEF and ODIN Treatment - Condensate and Gas Tie Ins
F	F 88	00	10	5046	Deck Drainage System - Utility Flow Sheet
`F	F 88	00	00	5043	Utility Water - Utility Flow Sheet
F	F 88	00	01	5041	Instrument Air, Plant Air - Utility Flow Sheet.

FF 88 00 17 5044	Fire Water and Washdown Piping - Utility Flow Sheet
FF 88 00 08 5045	Hydraulic Power Distribution
FF 88 00 00 5555	Legend for Piping and Instrument Diagrams Sheet No. 1.

1.7.1.3 Plot Plans - Arrangement Drawings

FF 88 20 00 0105	Static Module M50 - Plot Plan.
FF 88 20 00 0101	Pancake 53 - Plot Plan
FF 88 20 00 7300	Tie In Piping Arrangement Cellar Deck - El. 100.000
FF 88 20 00 7305	Tie-In Piping Arrangement Main Deck El. 108.850
FF 88 20 00 7307	Tie-In Piping Arrangement Upper Deck El. 116.350
FF 88 20 00 8860	General Arrangement of DP 2 Package of Methanolated Water Injections.

2 PRINCIPLE OF ENGINEERING DESIGN

2.1 ENVIRONMENTAL CONDITIONS

2.1.1 Wind

2.1.1.1 Wind Profile

The wind speed has been calculated as a function of height above the mean water level and averaging time interval by the power law.

$$V = V_{1hr}, 10 \quad (\frac{Z}{10})^{\beta}$$

Where:

V _{tz}	is the wind speed averaged over a
02	time interval as defined by a and
	β , Z metres above the mean
	water level.

- V 1hr, 10 The wind speed averaged over one hour, 10 metres above the mean water level.
 - a gust factor; referenced to
 - B height exponent
- 2.1.1.2 Factors in the Power Law for Wind Profile

		AVI	ERAGE TIME	INTERVAL		
	1 hr	10 min.	1 min.	15 sec.	5 sec.	3 sec.
a	1.000	1.060	1.180	1.300	1.370	1.390
3	0.150	0.130	0.113	0.106	0.102	0.100

2.1.1.3 Reference Wind Speed

The reference wind speed has been taken as the averaged wind speed over one hour, 10 metres above the mean water level, and with a 100 years return period.

$$V_{1hr} = 42.45 \text{ m/s}.$$

2.1.1.4 Prevailing Winds

Prevailing winds are from W S W to N W sector.

2.1.1.5 Storm Wind Direction

Storm winds on Frigg Field vary in direction throughout the year according to prevailing directions stated below.

MONTHS	SEPT	OCT	NOV	DEC	JAN	FEB	MAR	APR	MAY
NW & N	44	40	35	27	19	12	28	18	51
w & Sw	35	47	40	35	37	31	28	28	33
S & SE	18	13	20	34	40	57	43	54	16
E & NE	3	<1	5	4	4	<1	1	<1	<1

Storm wind \geq 10 BEAUFORT (25 m/s).

2.1.2 Ambient Air Conditions

2.1.2.1 Ambient Air Temperature

The expected extreme daily averaged temperatures are:

Minimum - 9°C Maximum +22°C.

2.1.2.2 Ambient Air Relative Humidity

Maximum 99 % Minimum 35 %

and saliferous atmoshpere.

2.1.2.3 Rainfall

Rainfall yearly average 990 mm

Maximum 24 hours 86 mm

Average number of rainy days: 195 days/year.

2.1.2.4 Atmospheric Pressure

Mean pressure monthly average at sea level:

753 mm/Hg (Dec) 761 mm/Hg (June).

2.1.2.5 Snow and Ice Accumulation

Snow and ice accumulation has not been considered in the the overall calculation.

2.1.3 Sea Water Characteristics

2.1.3.1 Sea Water Temperature

Extreme temperatures at the sea surface:

Minimum + 4°C Maximum + 17°C

Extreme temperatures at - 50 m LAT:

Minimum + 5°C Maximum + 12°C

Extreme temperatures at - 100 m LAT: (Sea bottom)

Minimum + 4.8°C Maximum + 9.5°C.

2.1.3.2 Sea Water Salinity

The extreme value of the sea water salinity expressed in weight percentage is:

at the sea surface : minimum 31.27 o/oo maximum 35.40 o/oo

Current velocity at 30 metres above sea bottom 0.70 m/s Current velocity at sea bottom 0.30 m/s.

at - 50 metres LAT	: minimum 34.02 o/oo maximum 35.41 o/oo
at - 100 metres LAT	: minimum 34.30 o/oo : maximum 35.48 o/oo

2.1.3.3 Sea Water Oxygen Content

The sea water oxygen contents based upon a monthly average is:

at the sea surface	: minimum 5.69 ml/l : maximum 7.16 ml/l
at - 50 metres LAT	: minimum 5.51 ml/l : maximum 6.89 ml/l
at - 100 metres LAT	: minimum 5.56 ml/l : maximum 6.60 ml/l

2.1.4 Water Depth - Sea Level

2.1.4.1 Water Depth

On the site of TCP-2 Platform, the sea water depth is 103 metres from the LAT (Lower Astronomical Tide).

2.1.4.2 Tide in Storm Conditions

Maximum astronomical tide range above LAT 1.70 m Maximum wind drift surge 0.30 m

2.1.4.3 Tide in Operating Conditions

Maximum astronomical tide range above LAT 1.70 m Maximum wind drift surge 0.30 m

2.1.5 Waves and Current

2.1.5.1 Storm Conditions

Wave	height	29	៣
Wave	period	16	s

Current velocity at surface 1.35 m/s

2.1.5.2 Operating Conditions

Wave height	17.4	m
Wave period	12	\$
Current velocity at surface	1.00	m/s
Current velocity at 30 m above sea bottom	0.58	m/s
Current velocity at sea bottom	0.30	m/s.

2.1.5.3 Prevailing Wave Direction

See 2.1.1.5 - "Storm Wind Direction".

It has to be noted that storms from W and SW, and especially from NE and E have a short fetch which limits the wave height.

The waves which are liable to present the maximum height are from:

NW to N SE to S.

2.2 DOCUMENT NUMBERING, DISTRIBUTION AND ROUTING

2.2.1 Foreword

This document is based upon the Annex C of the F.087 contract.

2.2.2 Units of Measurements

The System International (SI) system has been used for all the project documents except for pipe nominal diameters, schedules and flange rating for which English units apply.

2.2.3 Numbering System

2.2.3.1 Numbering Equipment

A) Numbering of Main Equipment

All significant items of equipment have been given an equipment number that comprises a prefix and suffix. The indices of prefixes are as follows:

CV	Vessels,	Filters
----	----------	---------

- CP Pumps
- CC Compressors
- CT Turbines
- CE Heat Exchangers, Air Coolers
- CH Heaters
- CQ Glycol Regeneration Units and Package Units
- CM Pig Launchers and Receivers,
 - Miscellaneous Mechanical Equipment
- CPS Miscellaneous Piping (Strainers, Silencers, Choke Valves).

The suffixes are assigned sequentially for each item of equipment starting at:

200 for ODIN equipment

- 210 for North East Frigg equipment
- 220 for equipment common to North East Frigg and ODIN effluents treatment.

In the event of two or more identical items of equipment existing, a further suffix A, B, C etc. is assigned.

i.e. CV 5A CV 5B etc. B) Line Identification (for Piping only)

The line identification consists of six parts, and the following is an illustration:

	С	2026	EC	10"	Ρ	1
	:	:	:	:	;	•
Platform TCP-2	-:	:	:	:	:	•
Line Number		:	:	:	:	:Type of
Pipe Specification			-:	:	:	Insulation
Nominal Line Size				:	:	
					:•	Commodity _in Line

B.1 Platform : TCP-2 = C

B.2 Line number : For the TCP-2 Extension the following series were used:

		:	2000	to	2099	
		:	2100	to	2199	
ODIN	å	NEF:	2200	to	2399	
		:	2400	to	2599	
	ODIN	ODIN &	ODIN & NEF:	: 2100 ODIN & NEF: 2200	: 2100 to ODIN & NEF: 2200 to	: 2000 to 2099 : 2100 to 2199 ODIN & NEF: 2200 to 2399 : 2400 to 2599

B.3 Pipe Specification

Specification identification is defined in the piping specification S-FF 88 20 5406.

B.4 Commodity in Line

The following identification was be used:

Commodity

Commodity Identification

	-
Process	Ρ
Relief	R
Vents	В
Process and Deck Drains	DR
Glycol	G
Hydrocarbon Dump	HD
Fuel Gas	FG
Diesel Oil	DO
Methanol Air	ME
Instrument Air	IA
Plant Air	PA
Fire Water	FW
Sea Water	SW
Utility Water	UW
Hydraulic Fluid	HF
Mud	M
Potable Water	PW

- B.5 Type of Insulation
 - 1. Calcium silicate
 - 2. Cellular Glass
- C. Structural Identification

Welding symbols are according to AWS D1.0 and AWS D1.

D. Electrical Identification

The IEC 117 graphical symbols are used.

E. Instrument Identification

The I.S.A: - S5.1, Instrumentation, Symbols and Identification were for tagging of instruments.

- 2.2.3.2 Numbering of Engineering Drawings (Including Isometrics)
 - A. General

The drawings were coded as follows:

-	2	letters	s for	r sii	te identification	(1)
-	2	digits	for	the	installation	(2)
-	2	digits	for	the	speciality	(3)
-	2	digits	for	the	system	(4)
-	4	digits	for	the	chronological number	(5)
-	2	digits	for	the	revision index	(6)

Example:

		FF	88	20	11	5137	04
		:	:	:	:	:	:
(1)	Site (Frigg Field)	-:	:	:	:	:	:
(2)	Installation (TCP-2 Ext.)-		-:	:	:	:	:
(3)	Speciality (Piping)			-:	:	:	:
(4)	System (Corrosion inhibito						:
	injection)					:	:
(5)	Chronological					:	:
(6)	Revision						•:

B. Codification of Site

All new developed drawings had a site identification:

FF (series 88).

The originals from the Frigg existing installations which were modified (for integration works) were coded FE (Frigg Extension) until the As Built stage. At that time the "FE" code was replaced by the original one. Through all stages the other numbers except the revision number remained the same.

C. Codification of Installation

00. If more than one main class is concerned.

- 10. Standards
- 60. North East Frigg Development
- 61. Field Control Station
- 62. Sub-sea Wells
- 63. Pipeline
- 64.

65.

- 66. Experimental Equipment
- 67.

68.

69.

70. Frigg Field Line and Cable Connection

- 80. Frigg Field Development Phase 2
- 81.
- 82.
- 83. <u>DP-2</u> = Drilling Platform No. 2

84. Wells DP-2

85. <u>TCP-2</u> = Treatment and Compression Platform No.2 (Treatment)

```
86.
```

87. Compression Facilities of TCP-2

88. TCP-2 Extension

90. Frigg Field Development Phase 1

91. CDP-1 = Concrete Drilling Platform No. 1.

92.

93. DP-1 = Drilling Platform No. 1.

94. Wells CDP-1

95. TP-1 = Treatment Platform No. 1.

96. QP = Quarters Platform

97.

98.

99. FP = Flare Platform

D. Codification of Speciality

00 - General document if more than one speciality concerned (P and I Diagrams).

Including - General view of installation.

- Plot plan
- Area classification
- Architectural
- Safety Plot Plan

16 - Instrumentation

- 20 Piping, Casing
- 21 Steel Structures (except jacket and support frame)
- 22 Offshore Platform (jacket, support frame)

23 - Electricity

- 24 Civil Work (concrete structure)
- 26 Mechanical
- 30 Process
- 36 Underwater Intervention Equipment
- 37 Sea Fastening, Temporary Equipment, Erection

E. System Identification

The equipment identification system is different from platform to platform.

E.1 Installation : DP-2 (83) Index of systems Designations System No.: 00 Generalities Air System 01 Air Compressors Dryers Nitrogen System Plant Air (10 bars) Instrument Air (3 bars) Instrument Outlet Signals 02 Electrical System (5.5kV Distribution System inside Module A). 03 Electrical System (380 V and 220 V Distribution) MCC and Distribution Interlocks Normal Lighting Generator Earthing 04 Electrical System (48 V Distribution) Battery and Chargers Switchboard 48 V DC and Distribution 05 **Detection System** Smoke Fusible Plugs Gas Detectors Fire Detection Panel 06 Protection System Deluge System Halon System C02 Firepumps (SPP) Monitor Hose **Extinguishers** Remote Start Fire Pumps ESD DSD Emergency Lighting 24 hrs Emergency Lighting 1 hr

	07	Evacuation Lifeboats (Two Lifeboats only in Module 4) Escape Routes Lifesaving Equipment Life Raft Supports on Module Framing
	08	<u>Warning</u> Alarm Horn (for DSD Fire) Public Address Telephone Cable Pulling
	09	Beaconing Navigation aids Warning Lights Horn
	10	Soft Water System
~	11	Utility Sea Water System
	12	Gas Oil System
	13	Ventilation - Air Conditioning - Pressurization
	14	Test Separator and Flare
	15	Gas Circuit by Well
	16	Gas Outlet Scrubbers (inside Modules)
	17	Vent System
	18	Condensate System (inside Modules)
	19	Kill Lines (inside Modules)
	20	Methanol System
	21	Corrosion Inhibitor System
	22	Hydraulic Pneumatic and Electrical System for Valves.
	23	Hydraulic Pneumatic and Electrical System for ROV Valves (except ROVs 201-202 and 203) West Cluster East Cluster
	24	Slop Line (inside Modules)
	25	Drain System (inside Modules and Support Frame).

26		Lifting Devices (inside Modules)
27		Living Quarters
28		Steel Structures
29		Chlorination Lines
30		Offshore Work Site Handling Mobilization of Site Installation Site Administration Demobilization of Site Installation
35		Miscellaneous
50		Life Rafts
51		Telephone Installation
52	·	Geotechnical and Mechanical Syminex Syntef Comsip
54		Methanolated Water Disposal

•

-

Installation : QP (96)	
Index of Systems	
System No.:	Designation:
01	Firewater and Fire
Detection	
02	Potable Water
03	Utility Water
04	Transformer and Emergency Generator
05	Drainage and Condensate
06	Instrument and Plant Air
07	Safety Systems
08	Diesel Oil
09	Washdown Water
10	Air Conditioning
11	Telecommunications
13	Incineration - Fuel Gas
14	Control Room
15	Aviation Fuel
16	Sewage
17	Electrical
18	Steel Structure and Module
19	Geotechnical and Mechanical
20	Oceano - Meteo Equipment
25	Miscellaneous
26	Cathodic Protection
27	Computer

E.2

E.3	Installation : TCP-2 Ex	tension (88)
	 only 2 digits are used drawings. 	for numbering of engineering
	- subsystems coded as A, later on for progress, start-up purposes.	B, C, etc were used planning, commissioning and
		d as they do not correspond TCP-2 Extension project.
· .	INDEX OF SYSTEMS	
	00	Generalities, Loop Diagram
	01	Instrument and Plant Air Supply
		a) Instrument Air Distribution b) Service Air Distribution
	02	Fuel Gas
	03	Electrical Systems
		 a) Cable Trays b) 380 V Power Distribution c) Normal Lighting d) Emergency Lighting e) Emergency Power (220 V No Break) f) 24 V DC g) Grounding h) Trace Heating
	04	High Pressure Relief
		a) High Pressure Relief to CV 24 b) Low Temperature Relief
	05	Low Pressure Relief
	06	Safety Systems
		a) Public Address and Public Alarm b) Gas Detection c) Fire Detection
	08	Hydraulic and Shut Down System
	09	Methanol High and Low Pressure
		a) Methanol High Pressure b) Methanol Injection to NEF

.

٠

and a second second

10	Drainage
	a) Open Drainage b) Closed Drainage c) Methanolated Water
11	Condensate
12	Gas CV 1A - CV 210 to Compression Header
14	Gas Inlet (from Riser to CV 1A, CV 210 Inlets).
16	Glycol Heating Medium
17	Fire Water and Extinguishing System
	a) Fire Water b) Deluge Water c) Extinguishing System
18	Washdown
22	Miscellaneous
25	Steel Structure and Modules
	a) Structure b) Access and Escape Ways
27	Corrosion Inhibitor
29	Lifting Equipment
30	Cathodic Protection

F. Chronological Number Breakdown

This number is established for each speciality per installation.

F.1 TCP-2 Extension : Site Code : 88

.

F.1.1 Discipline 00 : General

0001	to	0999	:	Plot Plan - Layout
1000	to	1999	:	Architectural General Platform
2000	to	2999	:	No Allocation
3000	to	3999	:	General Loading Drawings
4000	to	4999	:	Safety
5000	to	5999	;	PID
6000	to	9999	:	No Allocation

F.1.2 Discipline 16 : Instrumentation 0001 to 0999 : Reserved for temporary drawings 1000 to 9999 : No special breakdown

F.1.3 Discipline 20 : Piping

	Arrangement Drawings
2000 to 2099 :	Isometrics for ODIN Lines
2100 to 2199 :	Isometrics for NEF Lines
2200 to 2399 :	Isometrics for Common Lines to
	ODIN & NEF
2400 to 2599 :	Isometrics for Utility Lines
2600 to 3999 :	No Allocation
4000 to 4999 :	Pipe Supports
5000 to 9999 :	Others

F.1.4 Discipline 21 : Structural

0001 to 1099) :	General
1100 to 1999) :	Support Frame
2000 to 2999		Structural Module Upper Deck (M50)
3000 to 399) :	Main Deck : T.O.S Skid Beams
4000 to 4999) :	Columns C1-C3-C5 Equipment
5000 to 5999) :	Cellar Deck (P53) - Bridge TP1 - TCP-2
6000 to 6999		Weight Estimate
7000 to 799		Miscellaneous, Projects, Sketches 🕓
8000 to 899		Sketches (Installation Drawings)
9000 to 999) :	No Allocation

- F.1.5 Discipline 23 : Electricity
 - 0001 to 9999 : No special breakdown
- F.1.6 Discipline 26 : Mechanical

0001 to 9999 : No special breakdown

F.1.7 Discipline 30 : Process

0001 to 9999 : No special breakdown

Note : This discipline does not exist for EAN Engineering, but is allowed for TCP-2 Extension Project.

F.2 TCP-2 Extension : Other Site Codes

The new drawings to be issued for works connected to TCP-2 Extensions project but to be carried out within the Frigg Field existing facilities i.e.:

Site Code: 83 DP-2 85 TCP-2 Treatment 87 TCP-2 Compression 95 TP-1 96 OP

have, whatever the discipline is, chronological numbers taken within the range 8800 to 8899.

F.3 Revision Index

All revisions are mentioned on the drawings, and the updating of the drawings register shall be done accordingly.

2.2.3.3 Numbering of Technical Documents Other Than Drawings

2.2.3.3.1 Prefix

The FF Site Code will be preceeded by:

- S for Specifications, Data Sheets, Tie-In Files
- C for Calculation Notes
- CH for Charts
- P for Procedures
- M for Manuals
- L for Lists M.T.O.
- R for Requisitions

2.2.3.3.2 Field Specification

FF are always used for types of documents listed in paragraph 2.2.3.3.1.

2.2.3.3.3 Codification of Installation

Refer to paragraph 2.2.3.2.3.

2.2.3.3.4 Codification of Speciality

Refer to paragraph 2.2.3.2.4.

2.2.3.3.5 Chronological Number

Refer to paragraph 2.2.3.2.6.

Exception

For the following instrumentation equipment, the chronological number is taken within the given ranges:

Flow Transmitter Local Flow Meter Flow Meter with Totalizer Level Transmitter/Controller Pneumatic Level Switch Electrical Level Switch Level Gauge Pressure Transmitter Pneumatic Pressure Switch Electric Pressure Switch Pressure Gauge Temperature Probe Transducer/mA Thermometer Control Valve Choke Valve ESDV Valves Electro Valve Recorders Indicators P/I Transducers Alarm System Control Panel Interface Cabinet	61 62 63 70	00 00 00 00 00 00 00 00 00 00 00 00 00	to t	$\begin{array}{c} 11\\ 12\\ 20\\ 21\\ 22\\ 30\\ 31\\ 32\\ 30\\ 41\\ 42\\ 51\\ 52\\ 53\\ 60\\ 61\\ 62\\ 63\\ 70\\ \end{array}$	99999999999999999999999999999999999999	
Control Panel Interface Cabinet Fire Detection	70 71 80	00 00 00	to to to	70 71 80	99 99 99	
Gas Detection	81	00	to	81	99	

2.2.3.3.6 Revision Index

Refer to paragraph 2.2.3.2.7.

2.2.3.3.7 Numbering Sample

- FF 88 16 5301 00 S

1 2 3 4 5 6

1: Prefix (Specification here)

- 2 : Field Specification
- Codification of Installation Codification of Speciality 3 :
- 4 :
- 5: Chronological Number (Safety Valves here)
- 6: Revision Index

2.2.3.4 Numbering of Inquiries

The numbering will be as follows (sample).

F0 20 0001 00

2 3 1 4

1	:	Project Reference	:	FO
2	•	Speciality	:	refer to paragraph 2.2.3.2.4
3	:	Chronological number		
4	:	Revision index	:	two figures from 00 and so on.

2.2.3.5 Numbering of Engineer's Purchase Orders

The numbering will be as follows (sample): F0 1 20 0001 00 1 2 3 4 5 1: Project Reference : F0 2 : Nature of the order : 1 for equipment 2 for service contract 3 for mixed contract 3 : Speciality : refer to paragraph 2.2.3.2.4 4 : Chronological number : from 0001 and so on. 5 : Revision index : two figures from 00 and so on.

2.2.3.6 Numbering of Letters, Transmittals, Telexes, Minutes of Meeting

2.2.3.6.1 Numbering of Letters

A. Correspondence from Company to Engineer.

Letters have been numbered in sequence as follows:

LCE = Letter Company to Engineer 001 = First number of sequence

Any equipment mentioned in letters has been identified by its tag number whenever possible.

B. Correspondence from Engineer to Company.

Letters have been numbered in sequence as follows:

LEC = Letter Engineer to Company 001 = First number of sequence

Any equipment mentioned in letters has been identified by the tag number whenever possible.

2.2.3.6.2 Numbering of Telexes

Telexes have been similarly numbered as follows:

A. Telexes from Company to Engineer

where TCE = Telex Company to Engineer.

B. Telexes from Engineer to Company.

where TEC = Telex Engineer to Company.

2.2.3.6.3 Numbering of Transmittals

Drawings and specifications have been accompanied by a data transmittal form. These forms carried letter numbers as mentioned in paragraph 2.2.3.6.1.

2.2.3.6.4 Numbering of Minutes of Meeting

The minutes of meeting were numbered as follows:

A. - Minutes of meeting from Engineer

MEC 001 : First number of sequence

B. - Minutes of meeting from Company

MCE 001 : First number of sequence

All the minutes of meetings were transmitted by a numbered covering letter.

2.2.4 Document Distribution

The Engineering contractor distributed the various documents as follows:

- - - - -

Legend (0) : Original (R) : Reproducible

			· · ·		
	Documents (not limited to)	EAN DUSAVIK	EAN YARD	EAN SITE	TOTAL
Α.	Contract Correspondence				
	- Letters - Minutes of Meeting - Contractual Documents	4+1(0) 4+1(0) 6+1(0)			5 5 7
B.	General Correspondence				
	- Letters - Minutes of Meeting	4+1(0) 4+1(0)	1 1	1 1	7 7
С.	Engineering Documents				
	Engineering correspondence				
	- Letters - Minutes of Meeting	4+1(0) 4+1(0)	1 1	1 1	7 7
	Documents for approval				
	- Basic Engineering Documents	8			8
•	 Detailed Engineering Documents 	8			8

	·	Documents (not limited to)	EAN DUSAVIK	EAN YARD	EAN SITE	TOTAL
	<u></u> , i	- Documents established by Engineer	8			8
		 Documents established by Supplier for Engineer 				
		 Documents before approval by Engineer 	4			4
		. Documents with Engineer's comments	6			6
		Documents "Approved for Construction" or final documents				
		- Basic Engineering Documents	15+1(R)			16
		Detailed Engineering Documents:			:	18
		. Documents established by Engineer	15+1(R)			16
		. Documents established by Supplier	10+1(R)			11
	D.	Procurement Documents				
		Correspondence				
-mar (- Correspondence between Engineer and Company				
		. Letters . Minutes of Meetings	4+1(0) 4+1(0)			5 5
		Correspondence between Engineer and Suppliers or Contractors				
		. Before Purchase Order . After Purchase Order	3+1(0) 4+1(0)			4 5
		Tenderer's List				
		- Before approval - Approved	4+1(0) 4+1(0)			5 5

	Documents (not limited to)	EAN DUSAVIK	EAN YARD	EAN SITE	TOTAL
	Inquiry requests				
	 General Purchase Conditions Requests for Bids Requests for Dunchases 	4+1(0) 4+1(0) 4+1(0)			5 5 5
	- Requests for Purchases Bids and Bid Tabulation	4:1(0)			5
	brus und bru ruburution				
	 Acknowledgement of receipt Bids 	4+1(0)			5 5
	 Bid Tabulations for approva with associated 	6+1(0)			7
	correspondence - Signed Bid Tabulation	6+1(0)			7
	Purchase Orders				
	 Purchase Orders and Changes in Orders for signing 	4+1(0)			5
	- Signed Purchase Orders and				_
	Changes in Orders	4+1(0)	1	1	7
	- Purchase Order Lists	4+1(0)	2	2	9
	- Spare Parts Lists - Shipping Lists	4+1(0) 4+1(0)	2	2	9 5 9
	Acknowledgement of Receipt of Orders				
	Expediting/Inspection				
	- Expediting Reports	4+1(0)	1	1	7
·	- Inspection Reports	4+1(0)	1	1	7
	- Procurement Schedule Report		1	1	7
	 Manufacturing Schedules List of Suppliers 	4+1(0)	1	1	7
	Subcontractors	4+1(0)	1	1	7
	- Test Reports	4+1(0)	1	1	<u>7</u> ·
	- Acceptance Documents	4+1(0)	1	1	7
	Invoices	4+1(0)			5
E.	Project Control				
	Project Schedule	10	1	1	12
	Cost Control Report	6	1	1	8
	Financial Report	5			5
	Monthly Progress Report	10	1	1	12

 $\frac{1}{2} = \frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right) + \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2}$

. . . <u>. .</u>

Operating Manual 12-1(R) 12+1		(not limited to)	DUSAVIK	EAN YARD	EAN SITE	TOTAL
Operating Manual 12-1(R) 12+1	F.	Manuals			<u></u>	
		Operating Manual	12-1(R)			12+1(R) 12+1(R) 12+1(R)
G. Engineering Dossier 10+1(0) 10+1	G.	Engineering Dossier	10+1(0)			10+1(0)

-

• .

.

2.3 ENGINEERING DESIGN

2.3.1 Structural Design

The structural design of TCP-2 Extension Project (Module M50 and Pancake P53) has been founded on the following limitations given by EAN:

- 1) Decks to be flushed with adjacent decks
- Length of module to be equal to the adjacent module (MO1)
- Trusswork of module to be equal to adjacent module.
- Pancake configuration conforms to present temporary pancake.

In addition the design has been based on "TCP-2 EXTENSION PROJECT; STRUCTURAL BASIS OF DESIGN", which contains:

- 5) 6.3.2 Steel Structure; Basis of Design
- 6) SP M/NT No 43 BO A 301 ; Materials for Welded Steel Structures.
- 7) SP M/NT No 43 BO A 303 ; Fabrication of Steel Structures of Deck Modules

Module M50

Consists of:

- Two longitudinal trusses which are supported each 2 places.
- Lower deck on transverse beams spanning between the trusses.
- Upper deck on transverse beams spanning between the trusses.
- Mezzanine (intermediate) deck which is partly supported on the two trusses and partly by columns to the lower deck
- Sway bracing between the ends of the trusses.

Sway bracings, trusses, lower and upper decks forming a rigid box.

The truss members H-shapes are designed with vertical flanges which correspond to vertical node plates at each side of the nodes.

The node plates form areas with poor access for sandblasting and painting. These areas are therefore sealed by 8 mm plates. Also the support nodes (footings) are sealed areas.

A lifting rig is designed 5 m above upper deck. This rig reduces the amount of offshore work, and it contributes to the overall strength of the module during lifting which is the true design condition.

Lifting rig is temporary and shall be removed after installation.

Pancake P53

Pancake P53 is a pure beam structure with a deck plate on angle stringers which are spanning between primary and secondary beams.

A pipe support rack is located on the Pancake.

A lifting rig is designed to avoid conflicts between lifting slings and equipment. Lifting rig is temporary and shall be removed after installation.

2.3.2 Mechanical Design

The basis of the mechanical design was information obtained from Process Flow Diagrams. All equipment was designed to be exposed to a severe salt water atmosphere, 100% humidity and ambient temperature; - 9°C to 32°C.

All equipment has been designed in strict accordance with:

- NPD Regulations for Production and Auxiliary Systems on Production Installations
- DnV Technical Notes, Vol. B.
- 3) Codes and Standards listed below
- 4) Applicable Job Specifications.

Furthermore a great effort has been made in order to ensure compliance with the design document and to ensure good practice of QC-functions at the vendors in the lack of good working QA/QC systems.

2.3.2.1 Applicable Codes / Standards

Pressure Vessels: BS 5500 Heat Exchangers : BS 5500 and TEMA Class R Pumps : API 610 with the exceptions mentioned in the Purchase Order

2.3.3 Piping Design

2 3.3.1 Design

The piping design for this project was based upon following codes and standards:

- ANSI / ASME B31.3 Chemical Plant and Petroleum Refinery Piping (1980 edition)
- ASTM Material Standards
- Material requirements in accordance with the relevant ASTM standard and Det norske Veritas (DnV) "Technical Notes for Fixed Offshore Installations Volume B".

2 3.3.2 Piping Materials

2 3.3.2.1 Piping Materials on TCP-2

Material specification of pipework to be erected on TCP-2 was, to the extent possible, based upon the original "Piping Material Specification No. 2110-50-1" prepared by McDermott-Hudson. Some piping classes in this specification were, however, revised/replaced mainly due to following:

- Specified ASTM standard had been withdrawn (Class EFS)
- Non-existing in McDermott-specification (Class EFT)
- Process calculations showed design pressures allowing a lower flange pressure rating (Class EAT)
- Experienced problems with existing installations (Class EZS hydraulic fluid)
- Additional corrosion allowance for sea water piping (Class ELS).

2.3.3.2.2 Piping Materials on DP-2

Specification of materials for pipework to be erected on DP-2 was based on original Lummus Engineering Specification No. H.102 rev. 2.

Operating / design pressure for the methanolated water disposal line on DP-2 did not require more than 150 lbs flange rating. However, as some of the existing piping in class D1A (600 lbs) was to be utilized, decision was made to maintain this pressure rating throughout the system.

2.3.3.3 Piping Design Pressure Classes

	Pressure Rating	Piping Material	Piping Class	Service
	150 lbs	Carbon Steel	A2A, EA, EK, ELS, EU	Drainage, instrument air, plant air, process hydrocarbons, firewater, seawater, utility water, glycol, methanolated water, fuel gas, hydraulic fluid return
	150 lbs	Stainless Steel	EAT	Low Temperature Relief System
	300 1bs	Carbon Steel	EB .	Process hydrocarbons, glycol, low pressure relief.
	600 lbs	Carbon Steel	D1A, ECX	Methanolated water, high pressure relief
	1500 lbs	Carbon Steel	EFS	Process hydrocarbon gas, H.P. methanol, process drains, fuel gas, condensate / methanolated water
	1500 lbs	Stainless Steel	EFT	Hydrocarbon gas to relief
*	2300 1bs	Stainless Steel	EZS	Hydraulic fluid

* Design Pressure

2.3.3.4 Piping Stress Analysis

The major high pressure gas process lines and the entire low temperature relief system have been stress calculated utilizing a computer program for flexibility analysis.

2.3.4 Electrical Design

2.3.4.1 Motor Control Centre MCC

The 380 volt motor control centre for TCP-2 Extension is located in main substation M32.

The two existing TCP-2 Compression MCCs S.52.32.3.3 and S.52.32.2.3 are extended with two new switchboards delivered from National Elektro.

Each switchboard is split into two sections, "A" and "B"-sides. The interconnection between existing TCP-2 Compression MCC and new MCC extension is by an air circuit breaker rated at 1600 amps.

The following is a list of consumers for each switchboard.

S:52.32.3.3 -MCC "A" Ext.

CP 220 A	TEG Circulation Pump
CP 220 C	TEG Circulation Pump
CP 222 A	Methanolated Water Injection Pump
CP 224	Methanolated Water Drainage Pump
W14	Welding Socket.

S.52.32:2:3~~MCC "B" Ext:

CP 220 B	TEG Circulation Pump
CP 222 B	Methanolated Water Injection Pumps
W15	Welding Socket
DB 321	Normal Lighting Panel.

2.3.4.2 Lighting Distribution Board "DB"

There are two types of lighting DBs. Both are located in TCP-2 Treatment cabling room PO8. The cabinet is of normal industrial type. Manufactor ELDON IP 55. The cabinet is equipped with Merlin Gerin fuses.

Normal Lighting

The normal lighting distribution board DB 321 is fed from new TCP-2 Extension S.52.32.2.3 MCC. The fluorescent fixture is normal outdoor type IFA Ex (e).

Maintained Lighting

The new TCP-2 Extension emergency lighting DB 322 is supplied from the existing TCP-2 Treatment DB 308, a distribution board connected to the emergency power system. The lighting fixture is manufactured by IFA Ex (e).

2.3.4.3 Power Distribution Board "DB"

There are two types of power distribution boards. Both are located in TCP-2 Treatment interface room P13. The cabinet is of normal industrial type. Manufactor ELDON IP 55. The cabinet is equipped with Merlin Gerin contr. fuses.

Emergency Supply

The emergency supply cabinet DB 324, supplies the instrument and fire & gas system with 24 V DC. DB 324 is supplied from the existing TCP-2 Treatment DB 310 maintained instrument supply.

No Break

The no break cabinet DB 323 is fed from the TCP-2 Compression no break system in PC 44 S.53.44.3.9 interface room P13. This cabinet DB 323 feeds the instrument fire and gas, telemetry and zener barrier rack with 220V AC.

2.3.4.4 Trace Heating

The trace heating cabinet DB 316 is located in the cabling room PO8. Each outgoing circuit is going directly to a marshalling box and then splitted to each different heating cable. Phyretenox heating cable is used.

2.3.4.5 Hazardious Areas

The two modules for TCP-2 Extension, M50 and P53 are classified as Division 2 area.

2.3.4.6 Design

The design of electrical drawings and calculations is executed according to EAN standard, specification and integrated drawings.

2.3.5 Instrument Design

2.3.5.1 Instrument Installation M50 & P53

The instrument installation on TCP-2 extension comprises following functions:

- 1) Process Control & Monitoring
- 2) Emergency Shut Down & Process Safety System
- 3) Fire Detection & Protection Safety System
- 4) Public Address System

2.3.5.2 Process Control & Monitoring

The process control is based mainly upon local control loops except for gas flow through gas metering system where the set point can be remote controlled from central control room, (CCR) on QP platform. All control loops and various other parametres are monitored on mimic panel which is part of main control panel installed in CCR. Both local and remote recorders in main control panel are used.

Ref. (Appendix 3):

FF	88	00	00	5030	ODIN Gas Treatment
FF	88	00	00	5031	NEF Gas Treatment
FF	88	00	11	5032	NEF and ODIN Liquid Treatment Condensate Separation
FF	88	00	10	5033	NEF and ODIN Liquid Treatment Methanolated water
FF	88	00	00	5034	NEF and ODIN Liquid Treatment TEG and MW Facilities
FF	88	00	09	5036	NEF and ODIN Treatment Methanol Injection
FF	88	00	04	5090	NEF and ODIN Treatment Flare System
FF	88	00	10	5100	NEF and ODIN Treatment Process Drainage System
F.F	83	00	54	5101	NEF and ODIN Liquid Treatment Methanolated Water Injection on DP-2.

2.3.5.3 ESD and Process Safety

The ESD system is split in five different levels of which 4th and 5th levels are considered as process safety system.

1st level is field shut down with isolation of platforms.

2nd level shut down for TCP-2 is total shut down and also decompression of bridge and treatment lines.

3rd level is process shut down and this level can also be released by fire or gas detection system.

4th and 5th levels are process safety and shuts down either one production stream or part of the stream.

Ref.:

S-FF 88 16 08 9521	Description of Process Safety System
S-FF 88 16 9520	Functional Description of the ESD System
FE 00 16 00 5801	Frigg Field Shut Down General Logic Diagram
FF 88 16 08 9557	Shut Down Detail Logic Diagram

2.3.5.4 Fire and Gas, Public Address System

The fire detection system consists of UV flame detectors, smoke detectors and manual fire alarm buttons.

A fire control panel is installed in the interface room in P13.

Action is either fire alarm or 3rd level shut down release of deluge system depending of activation of sensors/pushbuttons. Operation of a push button will cause fire alarm, 3rd level shut down and release of deluge system in affected area. Activation of one UV detector or smoke detector will cause fire alarm whilst activation of two sensors in coincidence will cause 3rd level shut down and release of deluge in affected area.

Eight loudspeakers are installed in Module M50, 4 on upper and 4 on lower level. 2 loudspeakers are installed on P53. These are integrated in the existing PA system.

Ref.:

S-FF	88	16	9620	Description of Fire Detection System
S-FF	88	16	9720	Description of Gas Detection System
S-FF	88	16	9820	Description of Public Address and Alarm System

2.3.6 Safety / Loss Prevention

2.3.6.1 Area Classification

As for the rest of the Frigg Field the IP Model Code of Safe Practice, part 1 of 1965 with supplement and part 8 of 1972, is the basis for the area classification.

Definitions and classification of types of release and zones are based upon "Provisional Regulations for Electrical Installations in Explosive Areas", communications 1/77 from the Norwegian Water Resources and Electricity Board, NVE.

Reference is made to the following drawings:

FE	85	23	00	0020	Area Classification Upper Deck
FE	85	23	00	0021	Area Classification Main Oeck
FE	85	23	00	0022	Area Classification Cellar Deck
FE	85	23	00	0023	Area Classification East and South Elevations
FE	85	23	00	0024	Area Classification West and North Elevations.

2.3.6.2 Escape Routes

Escape routes are in accordance with Norwegian Petroleum Directorate (NPD) regulations.

2.3.6.3 Firewater System

The firewater systems for M50 and P53 are supplied from and integrated into the existing firewater network on TCP-2. Both M50 and P53 have interconnected dual supply from Treatment Area and Compression Area.

Firewater spray system capacity and coverage is in accordance with regulations laid down by NPD:

Process area

 $10 \ 1/min^2$

Surface of pressure vessels and tasks containing combustibles 10 1/min²

The deluge/spray system is designed in accordance with NFPA 15.

2.3.6.4 Fire Fighting Equipment

Folllowing firefighting equipment is installed:

M50:

- 2 Firewater Hose Reels
- 2 Firewater Hose Reels connected to AFFF Foam Tank
- 2 Wash Down Hose Reels
- 4 Firewater Monitor with 2 1/2" NOR Lock Hydrant

P53:

- 1 Firewater Hose Reel
- 1 Firewater Hose Reel connected to AFFF Foam Tank
- 1 Wash Down Hose Reel
- 2 Fire Monitor with 2 1/2" NOR Lock Hydrant.

3 NEF - ELECTRICAL POWER SUPPLY

3.1 GENERAL DESCRIPTION OF NEF POWER SUPPLY INSTALLATION

The North East Frigg facilities are linked to the TCP-2 Frigg Field platform via a 16" gas line, a 1 1/4" hydrate inhibitor (methanol) supply line and an electric power/signal supply cable which provides the FCS with both electrical power and remote control signals. Control signals are also transmitted through a radio link system.

The electrical sub sea cable between TCP-2 Frigg Field and FCS at North East Frigg is 18 km long. The penetration of the sub sea cable into the TCP-2 platform is through the J5-tube in Column 5. The length of the J5-tube is 150 m, the bending radius is 30 m and it contains four plastic tubes. One of these is used for the 1 1/4" hydrate inhibitor supply and one for the sub sea cable. On top of the J5-tube inside Column 5 a hang off table is installed, in which the sub sea cable has its anchor point.

Just a few meters above the anchor point the sub sea cable is spliced to the emerged power cable and the emerged signal cable. The emerged power cable and the emerged signal cable are running in parallel on the 12kV high voltage cable ladder to the 12kV high voltage room in Module 32.

From the anchor point and up to el. 99.000 the tray is running up inside column 5. From el. 99.000 to el. 101.000 a solide pipe is installed to protect the cables. After rising from el. 101.000 the cable tray bends into el. 104.000. When entering PC 43 the tray rises to el. 106.000. After turning north in PC 43 the tray rises to el. 107.400 to avoid pipes and crossing beams. The tray continues in this elevation through PC 45 till it rises into the 12kV high voltage room Module 32.

The 12kV high voltage cable ladder is of stainless steel, 300 mm wide and covered all the way in order to protect the 12kV high voltage cable. To meet the requirements of EAN regulations of full insulation between racks/trays of stainless steel and supports of mild steel, P.V.C. shims are used.

The 12kV high voltage room in Module 32 was formerly a workshop. To meet the requirements of NPD regulations for high voltage rooms, the following structural and HVAC tasks have been executed. An air lock is built in connection with existing entry in west end of the room. A wire mesh-wall with door is installed by the staircase. A sliding door is replaced with a bolted panel with emergency exit - door. The drain has been moved and relocated under the HVAC unit. Further a steel plate is mounted under the three water pipes which are crossing the 12kV high voltage room. The ventilation system in the 12 kV high voltage room comprises a new moisture eliminator, new fine filter, new sparkproof fan, heater, ductwork, new purging fan and accessories necessary to supply the sufficient amount of air, approximately 8000 m³/hr, to the H.V. room. In order to maintain an internal pressure of 6 mm WG above ambient, fresh air is drawn in from outside safe area. To remove moisture and entrained salt/dirt particles, the air is passed through a three stage moisture eliminator system, and through a centrifugal fan. In the H.V. room the air passes across 40 kW electric air heater. Via a rigid galvanized ductwork system the air is delivered to the H.V. room. Exhaust air is relieved to outside via a modulating fire damper, maintaining the area over pressure via an extract purging fan - not working under normal conditions.

The system will run automatically under normal platform operating conditions, and will shut down under ESD closure or by manual stop. After an emergency shut down, the H.V. room will be purged by the same system.

During purging the electric heater will be isolated and the extract purging fan will be working (approx. $5000 \text{ m}^3/\text{hr}$). The modulating fire damper will be kept fully open.

In the 12 kV high voltage room a cast resin power transformer and a 12 kV switchgear are installed. The transformer is fabricated at Asea Lepper works in Brilon, West Germany, and its power rating is 630 kVA, voltage rating 5,5/12kV+ 2 x 2.5 %, frequency 50 Hz, Vector group Dyn II and protective housing IP 23. The transformer is fitted with devices for service earthing on both the primary and secondary side, by fixed lockable earthing switches. The neutral point of the secondary winding is connected directly to earth. A two - core transformer 30/1/1A is fitted in the neutral inside the housing, one core rated 10 VA and CL.5 and the other core rated 10 CA CL.1.

The 12 kV switchgear is fabricated at the Merlin Gerin works in Grenoble, France, and consists of one voltage transformer cubicle and one drawout circuit - breaker cubicle. Voltage transformers are mounted in the voltage transformer cubicle. A 630A SF6 circuit breaker, current transformers, equipment for protection, measure, control etc. are located in the circuit breaker cubicle. Both cubicles have incomming and outgoing cables from below.

A drawout truck comprising a 400 A vacuum contactor and 350 A HCR fuses, manufactured at the G.E.C. works in Rugby, England, is installed in a spare 5,5 kV switchgear cubicle, tagged VC 622, in existing 5,5 kV high voltage room module 32. Voltage and current transformers, equipment for measure, protection, control etc., circuit earthing switch and space heaters are mounted in the cubicle. From VC 622 to the 630 kVA transformer a 3 x 120 mm^2 6 kV cable is installed on existing high voltage cable trays. All supply, control, heating, measurement and alarm cables in connection with the NEF power project are mainly clamped on existing trays, except under Module 32, where new low voltage cable trays are installed.

The electrical control board on mezzanine in MCC room, Pancake O8 on TCP-2 Treatment, is extended to display the mimic diagram of NEF Power Supply. The NEF mimic panel is manufactured at the Setram works in Salies - du - Salat, France, and fixed to the existing mimic panel's right side (front viewed). The length of extension panel is 72 cm. A new NEF alarm annunciator panel is mounted on the existing mimic panel to give alarm signals from NEF via a radio link system.

In the 12 kV high voltage room a signal isolation cabinet is installed. The purpose of this is to segregate high voltage from the signal circuit.

A signal cable is routed from the signal isolation cabinet via TP-1 platform to the central control room on QP platform.

The utility panel in central control room on QP platform is modified and shows the mimic diagram for the power supply to North East Frigg facilities.

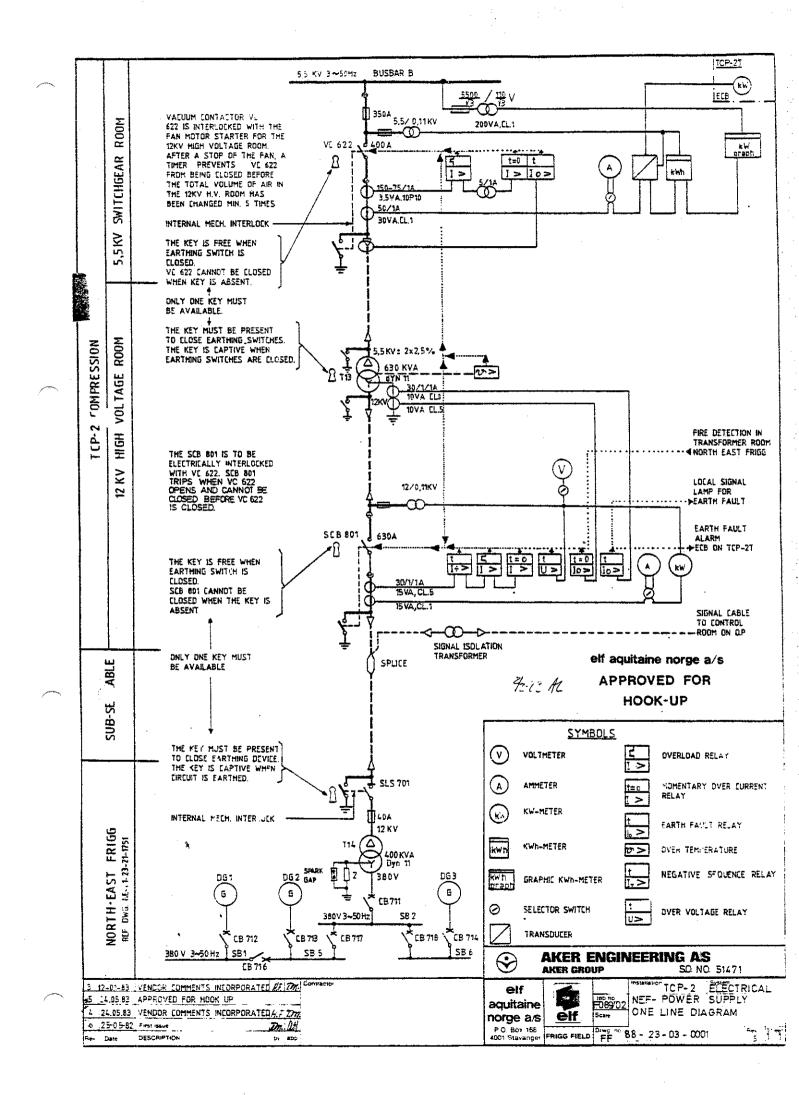
3.2 DESIGN PHILOSPHY

The electrical power supply from TCP-2 platform to the FCS on the NEF Field is the main power supply source for the FCS.

This is the first known high voltage power distribution plant via a combined power and signal cable over a relative long distance of 18 km. A lot of different calculations and investigations have been performed in order to ensure as high as possible reliability both for the power supply and the signal transmission line. As an example of calculation performed, it could be mentioned; a dynamical electrical network analysis for the whole Frigg Field. The calculation has been performed by EFI - the Norwegian Research Institute for Electricity Supply in Trondheim.

This analysis cover the following aspects:

- Short circuit levels in the network.
- Dynamical behaviour of the network due to short circuits and motorstarting on different platforms.
- Dynamical stability of the network. (Small signal disturbances)


As an example of investigations, an overharmonic rippel current measurement and a study regarding an eventual installation of a special harmonics filter in case of disturbances on signal transmission line, could be mentioned.

The choice of equipment such as the transformer, switchgear and other electrical equipment have been based upon well known design and references within the offshore industry. The high voltage equipment protection devices and settings have been selected in such a way that in case of a fault in the system, the fault shall be islanded without any interruption of other parts of the network.

For more detailed information concerning how the system is built up and tied into existing electrical network on TCP-2 the one line diagram - FF 88 23 03 0001 (Figure 1.17).

FIGURE 1.17

Drawing No.: FF 88 23 03 0001 NEF Power Supply One Line Diagram

APPENDIX 1

NEF GAS COMPOSITION, RESERVOIR PRESSURE AND

PRODUCTION PROFILE

NEF GAS COMPOSITION, RESERVOIR PRESSURE AND PRODUCTION PROFILE

GAS COMPOSITION NEF

COMPONENT	MOLE %	
N 2	.6682	
C02	.3010	
C1	94.2498	
C2	4.6479	
C3	.0722	
iC4	.0099	
nC4	.0100	
iC5	.0001	
nC5	.0002	
C6	.0012	
C7	.0058	
C8	.0082	
C9	.0083	
C10	.0073	
C11	.0043	
C12	.0028	
C13	.0013	
C14	.0007	
C15	.0003	
C16+	.0005	

NORTH EAST FRIGG

Hypothesis: With water drive

Date		Static Bottom Pressure (bar a)	Well Head Flowing Pressure (bar a)	Average Daily Quantity (MSm3/D)	Design Flow Rate (MSm3/D)	Minimum Delivery Pressure on TCP2 (bar a)
01.0	1.1984	176.8	146	5.78	7.0	136.
30.05	9.1984	168	138	5.78	7.0	128.
н	1985	155	129	5.78	7.0	119.
	1986	144	121	5.40	6.5	111.
н	1987	136	114	5.04	6.1	105.
н.	1988	128	108	4.00	4.8	101.

NORTH EAST FRIGG

Hypothesis: Without water drive

Date		Static Bottom Pressure (bar a)	Well Head Flowing Pressure (bar a)	Average Daily Quantity (MSm3/D)	Design Flow Rate (MSm3/D)	Minimum Delivery Pressure on TCP2 (bar a)
30.09	9.1984	160	129.5	6.38	7.7	115.
н	1985	133	106	6.1	7.3	93.
	1986	107	86	5.08	6.1	76.
	1987	88	70	4.2	5.0	61.
.0	1988	70	56	3.44	4.1	48.
	1989	58	45	2.86	3.4	37.
н	1990	46	35	2.36	2.8	30.
	1991	37	28	1.92	2.3	23.
н	1992	30	22	1.6	1.9	18.
	1993	24	18	1.3	1.6	14.

APPENDIX 2

ODIN GAS COMPOSITION, RESERVOIR PRESSURE AND PRODUCTION PROFILE

ODIN GAS COMPOSITION, RESERVOIR PRESSURE AND PROJUCTION PROFILE

GAS COMPOSITION ODIN

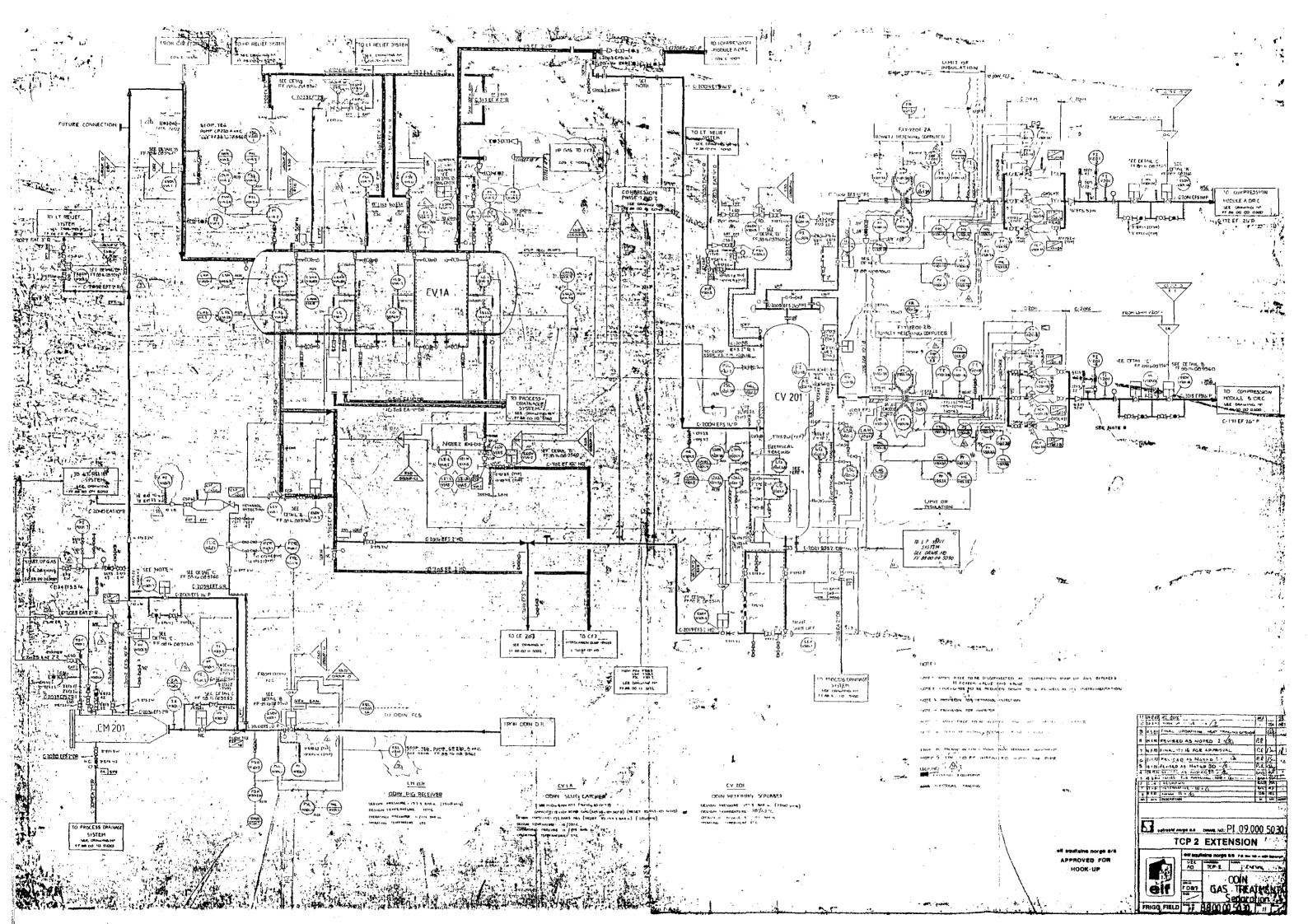
COMPONENT	MOLE %
N 2	.92
C02	.24
C1	94.81
C2	3.85
C3	.06
iC4	.01
nC4	.02
iC5	.02
nC5	.02
C6+	C6+ .05

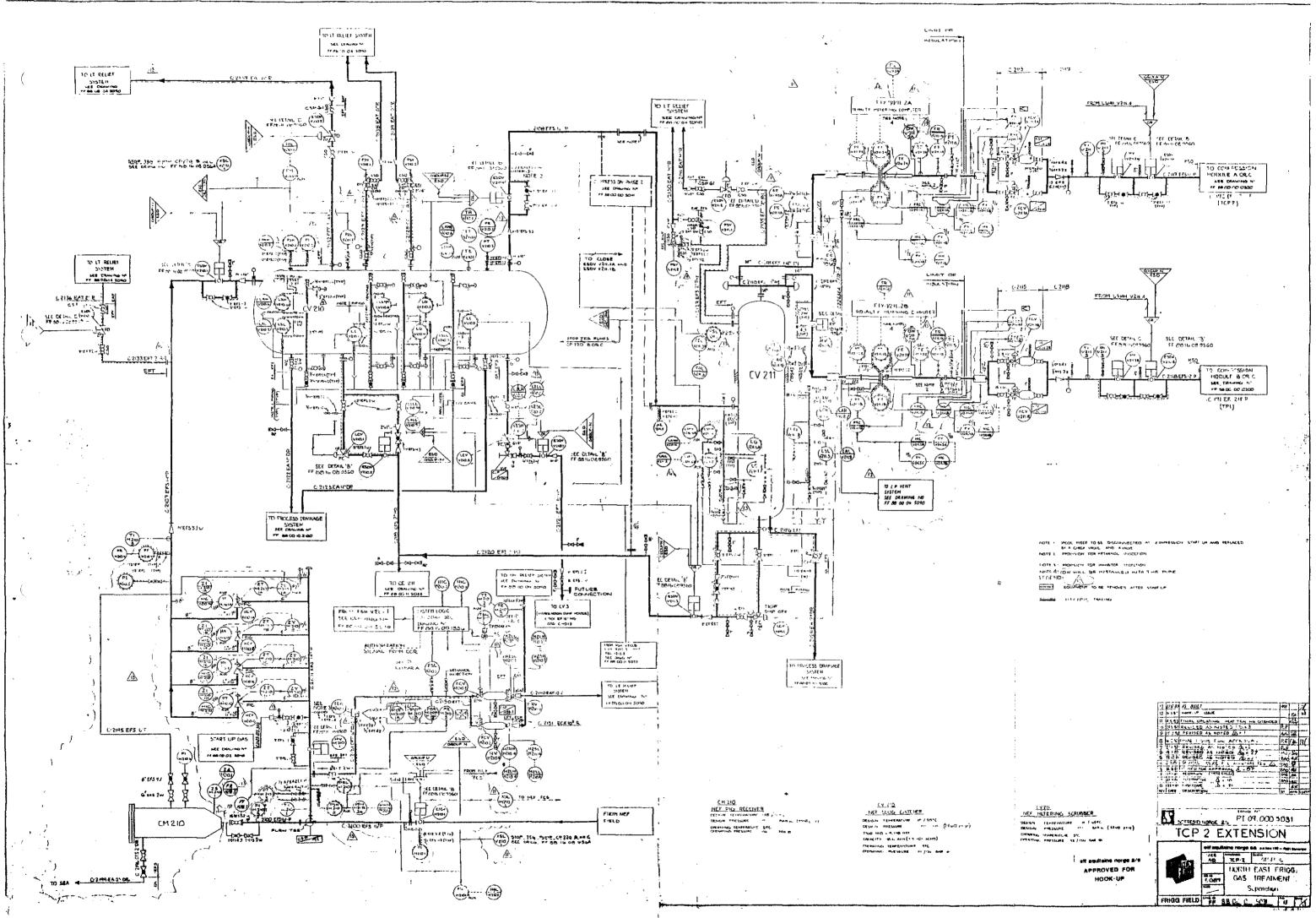
Da	ate	Static Bottom Pressure (bar a)	Well Head Flowing Pressure (bar a)	Average Daily Quantity (MSm3/D)	Design Flow Rate (MSm3/D)	Minimum Delivery Pressure on TCP2 (bar a)
01.0	1.1985	171.5	147	10.19	11.2	137.
30.05	9.1985	156	133	10.19	11.2	123.
**	1986	142	123	10.19	11.2	110.
н	1987	131	111	10.19	11.2	101.
н	1988	121	104	9.28	10.2	95.
н	1989	114	99	7.08	7.8	92.
н	1990	110	96	5.29	5.8	91.
н	1991	109	94	4.10	4.5	90.
	1992	109	93	3.28	3.6	90.
84	1993	109	92	2.89	3.2	90.

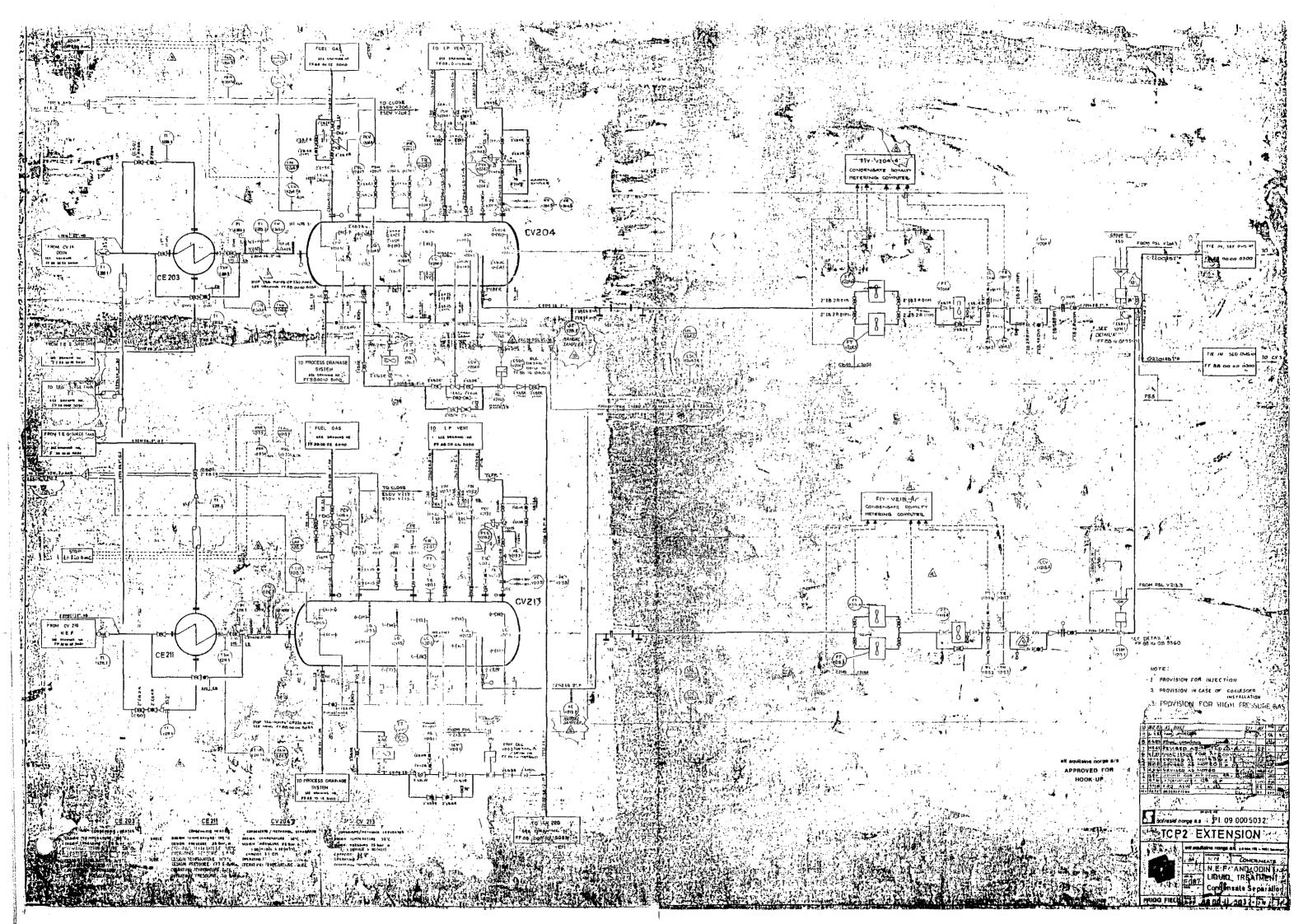
Hypothesis: With water drive

ODIN

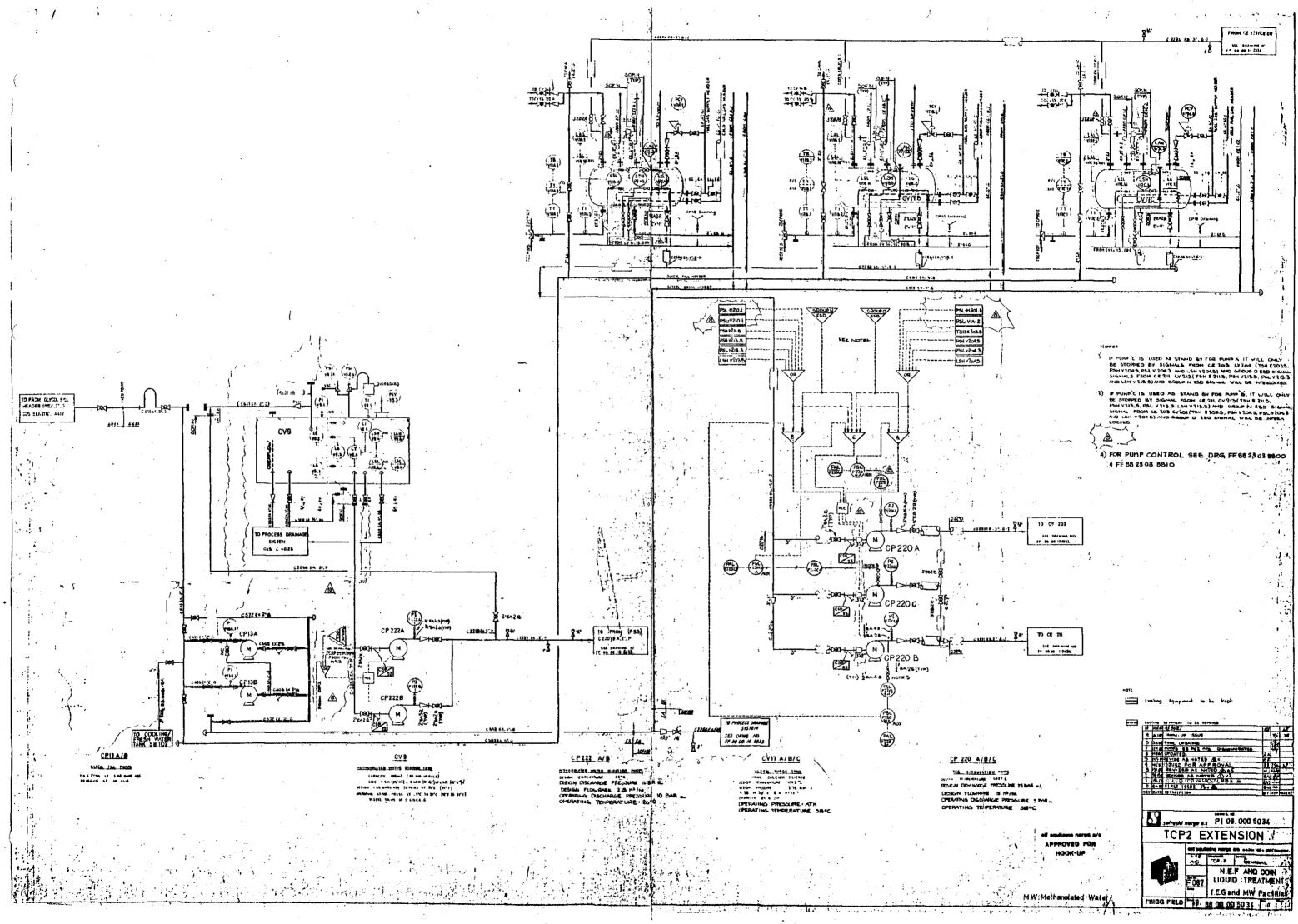
ODIN

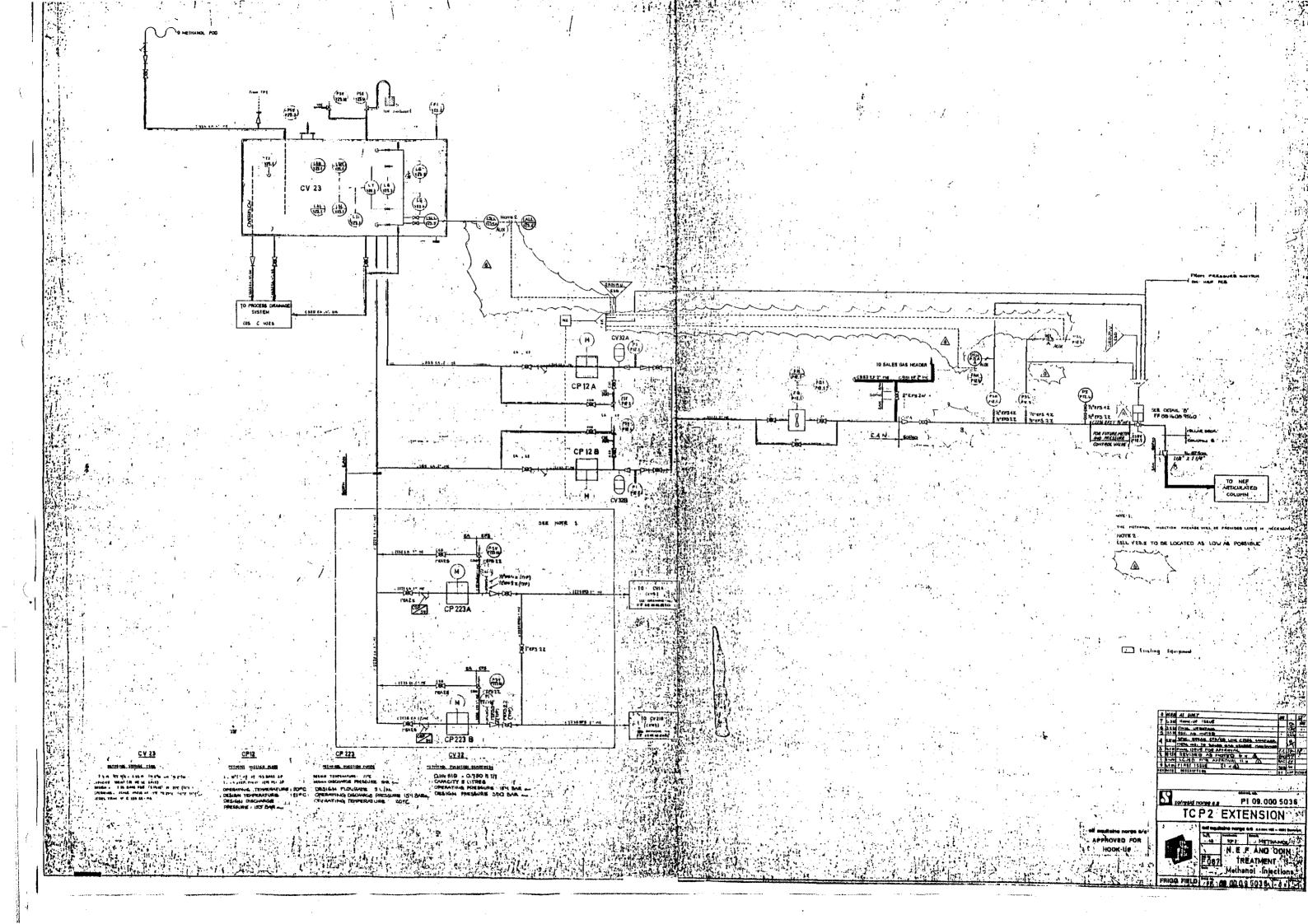

Hypothesis: Without water drive

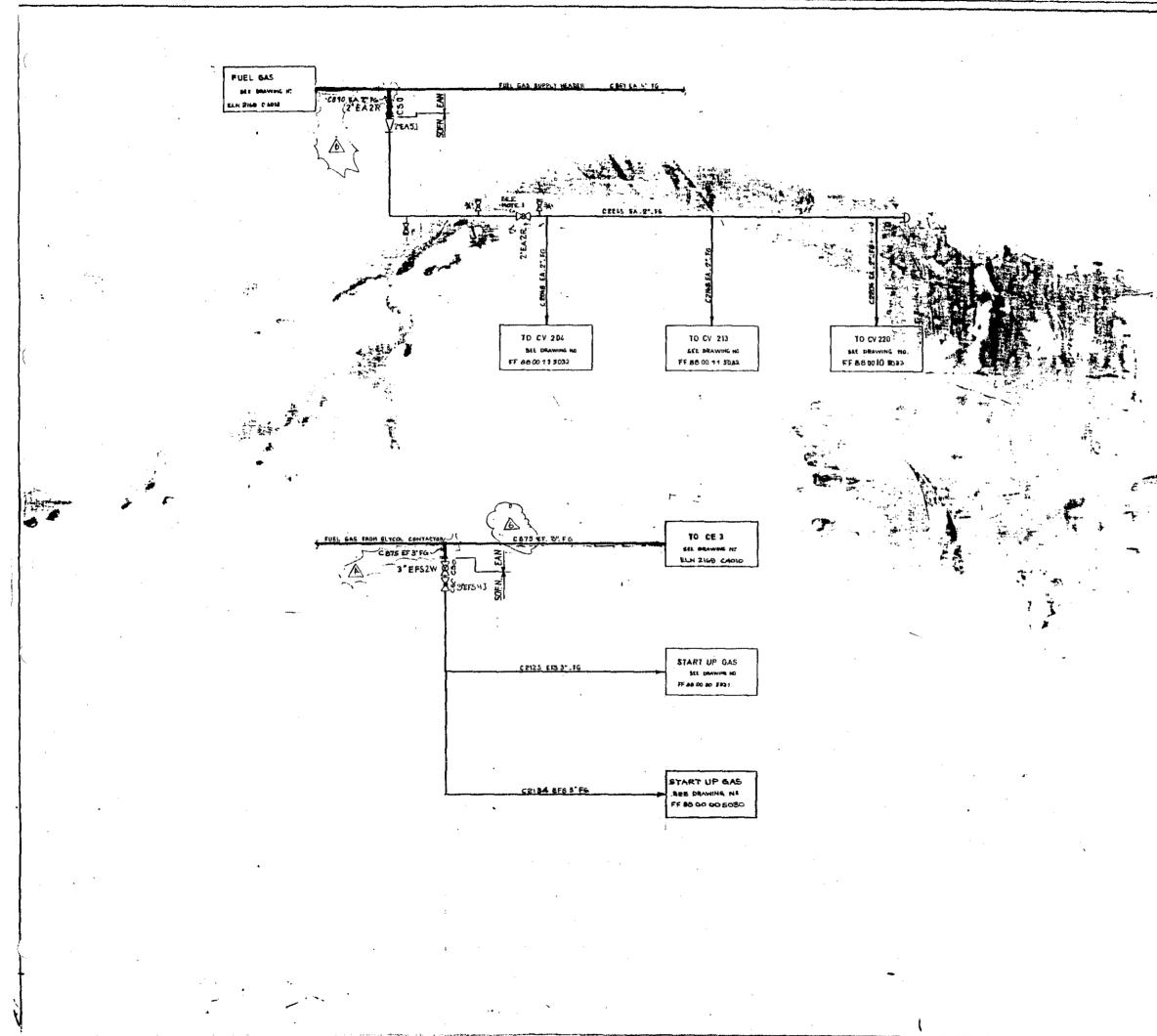

÷

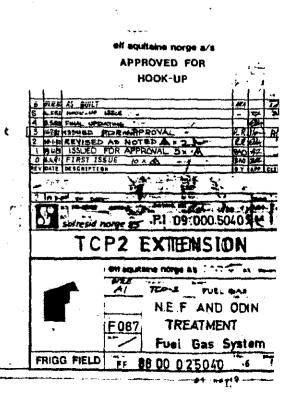

Da	ate	Static Bottom Pressure (bar a)	Average Daily Quantity (MSm3/D)	Design Flow Rate (MSm3/D)	Minimum Delivery Pressure on TCP2 (bar a)
01.0	1.1985	183	10.19	11.2	149.
30.05	9.1985	160	10.19	11.2	128.5
11	1986	130	10.19	11.2	101.5
н	1987	107	10.19	11.2	69.
н	1988	85	9.28	10.2	50.
83	1989	64	7.08	7.8	38.
н	1990	48	5.29	5.8	28.
н	1991	32	4.10	4.5	19.5
	1992	28	3.28	3.6	13.
	1993	25	2.89	3.2	11.

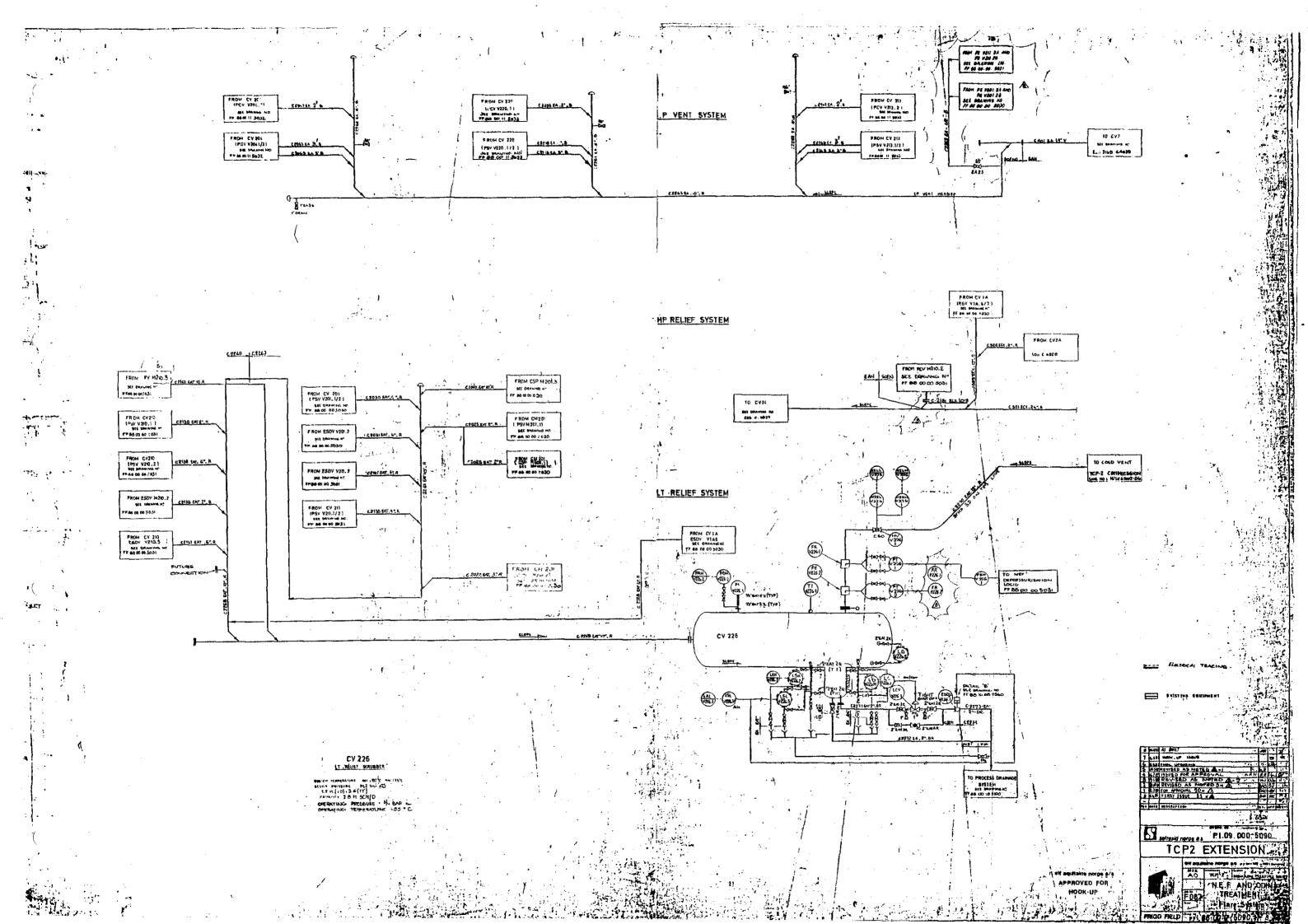
APPENDIX 3

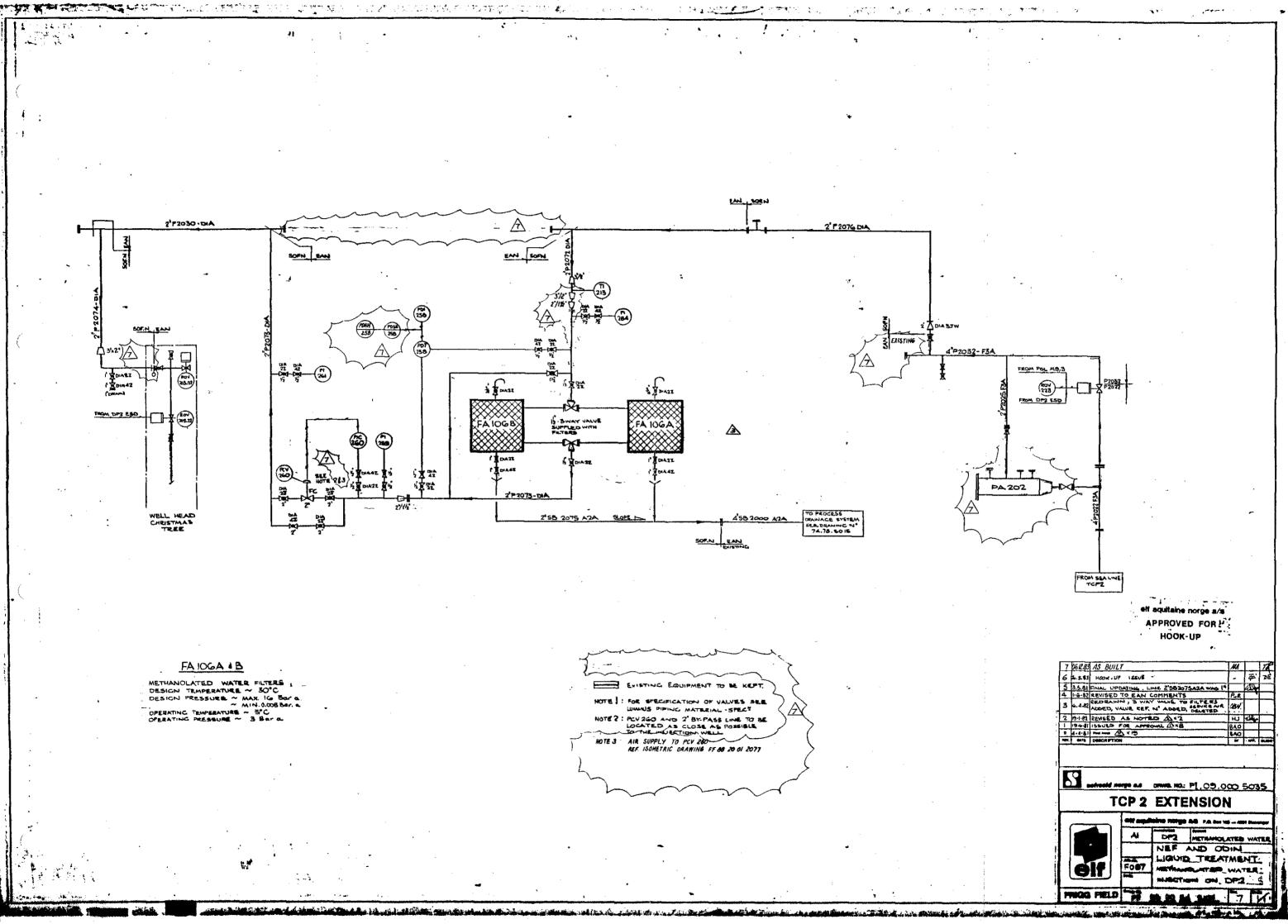

PROCESS FLOW DIAGRAMS

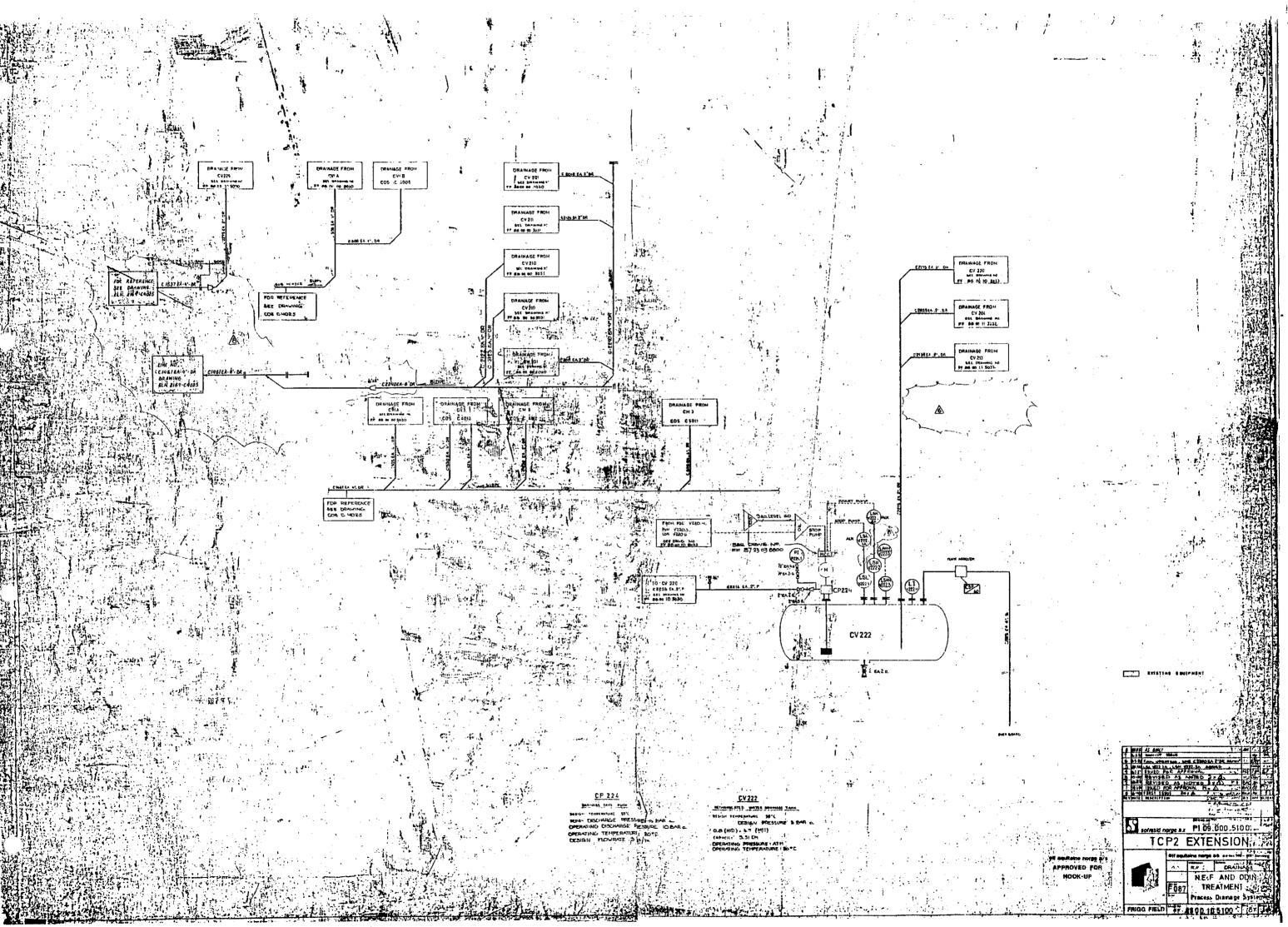


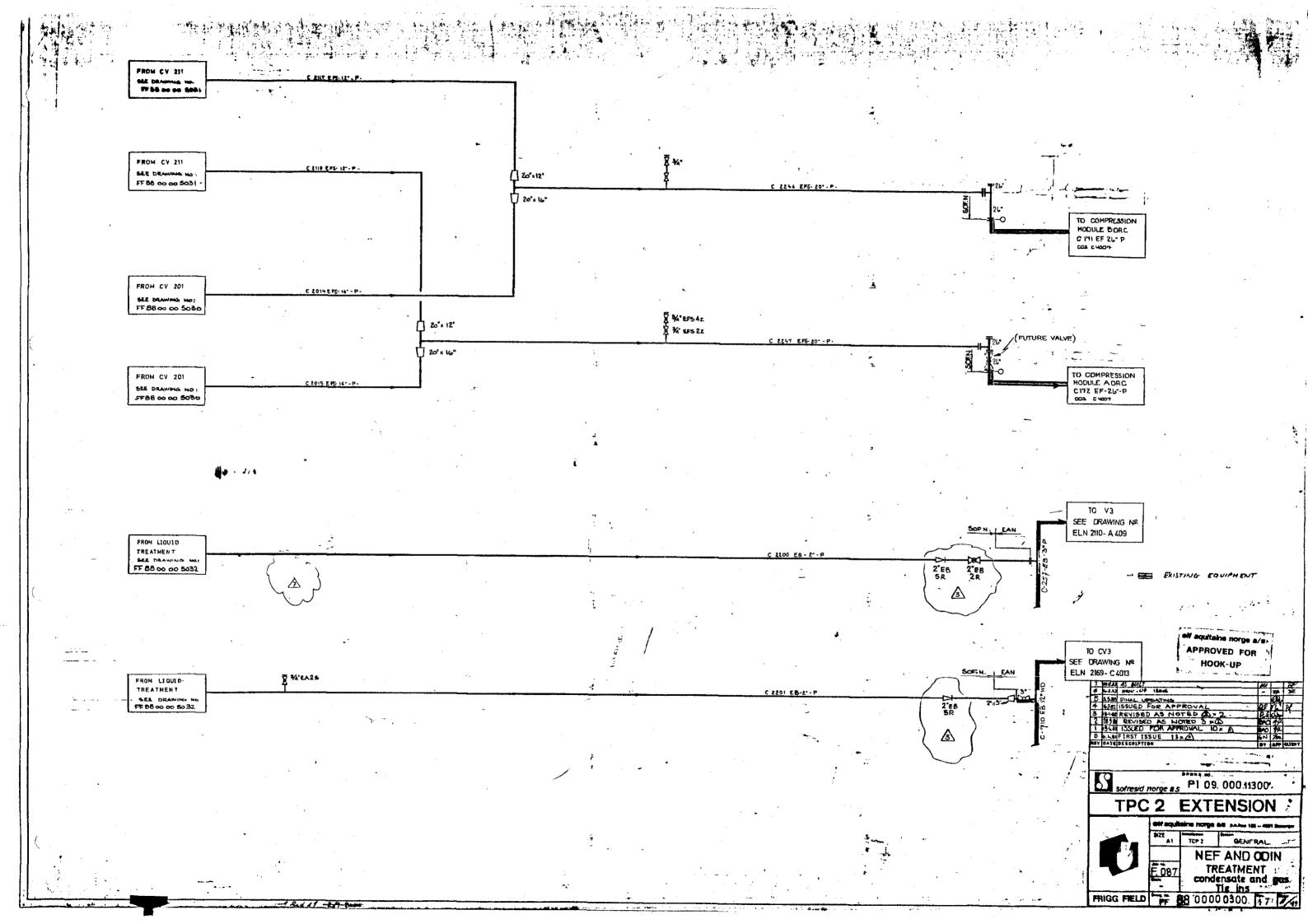


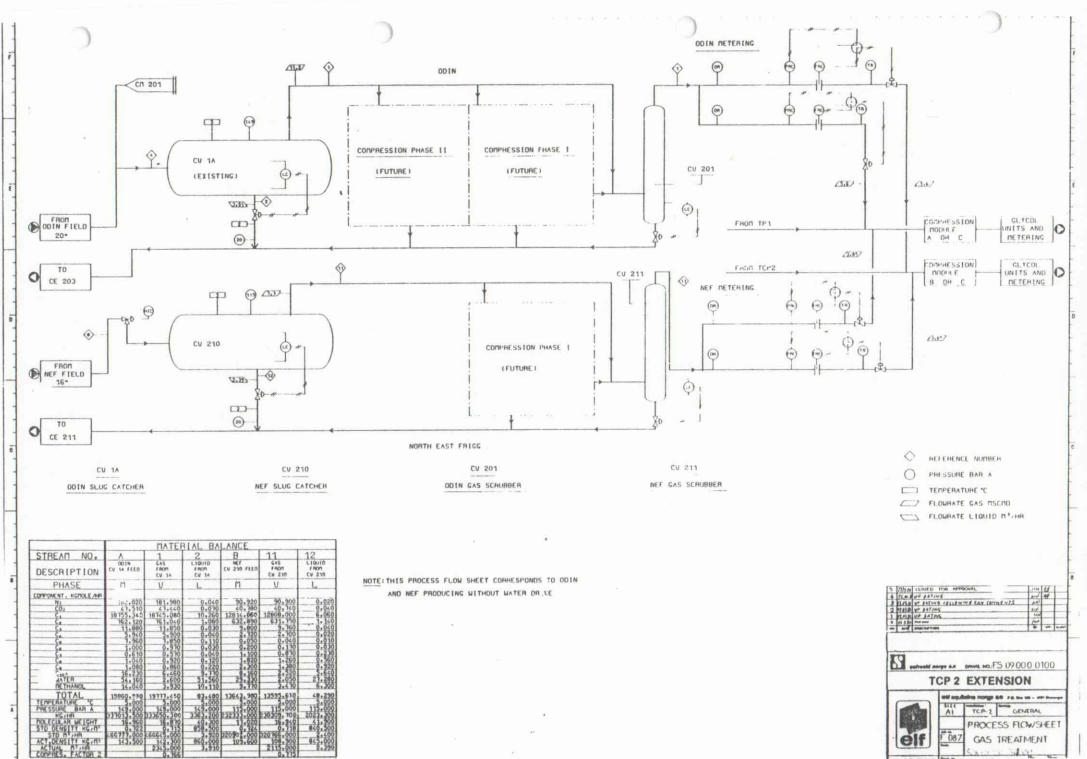


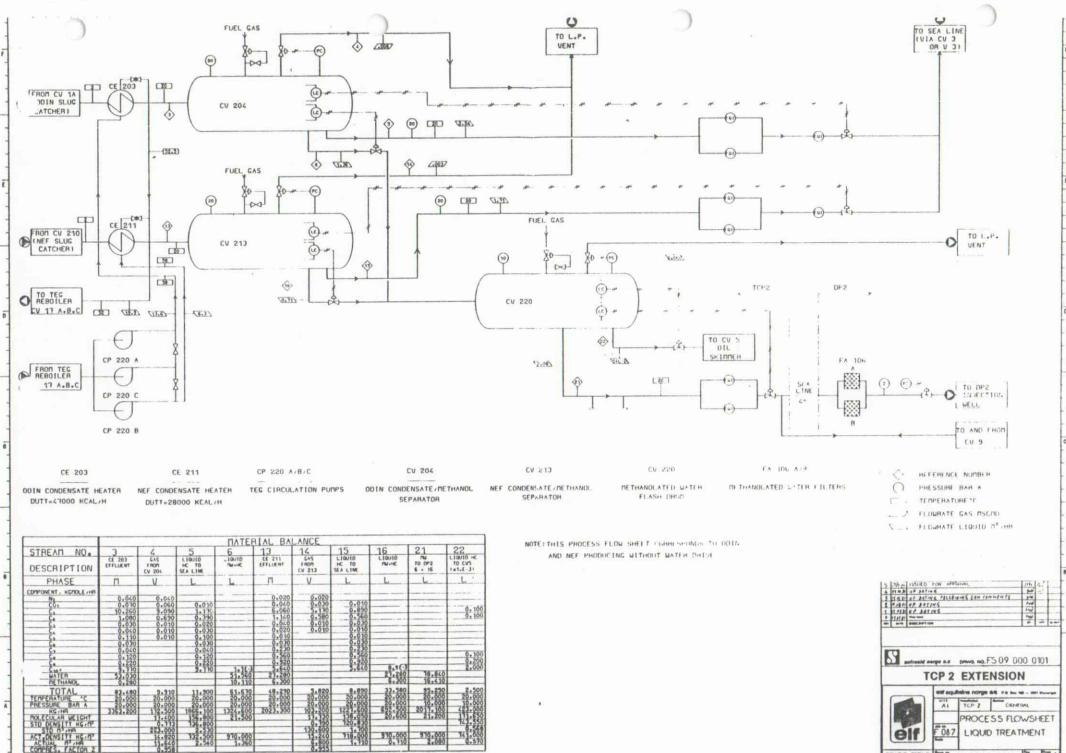












FRIGG FIELD THE AR ON ON S 101 10. TT

1_60

APPENDIX 4

SAFETY ANALYSIS TABLE (SAT)

	СМ 201	SERVICE	<u>F</u>	IG REC	EIVE	FLOW	DIAGR			88 00 00 5	03 REV. 8
UN UN	DESIRABLE EVENT	CAUSE			COND				ECTION SECONDARY		COMMENTS
					AT CON	1PONENT	4	RIMARY	SECUNDART		
OVE	RPRESSURE	BLOCKED OUTLET		H	IGH PRE	SSURE			PSV M201.1		SURE NOT POSSIBLE WP IS HIGHER THAN
										SINCE TH	PROTECTION REQUIRE E SYSTEM IS ONLY IN DURING PIGGING OF T
						•				l	
			ľ	•							
										,	
REV NO	REVISION	DAT			APPR .	APPR. BY CLIENT	CLIENT elf a	uitaine no	108 8/5 0.0 Box 168 - 40	01 Stavanoër	FRIGG FIEL
00 FIRS 01 REVI	r_issue Sed	26/03 13/06	/81 /81	JIN JIN	762. 44				APPR SCALE	r	
					·····		26, 03/81	CONSTR. JIN	APPR	 	SS sofresid norge a
·	الم			······				ETY AN	ALYSIS TAB		сн о5 1430
· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·					(SA	AT)		DB	WG NO

,

	UNDESIRABLE	~			DE	ABLE		PRO	TECTION		
	EVENT	CAUSE	,			ITION 1PONENT	PRIM	1ARY	SECONDARY	COMMENTS	
	OVERPRESSURE	BLOCKED OUTLET		HI	IGH PRES	SURE			PSV V1A.6+7	OVERPRESSURE NOT POSSI SINCE MAWP IS HIGHER T MSWHP.	
	OVERFLOW	LIQUID INFLOW EXCEEDS LIQUID OU LEVEL CONTROL FAIL		HI	IGH LIQI	JID LEVEL	LSHH V1A.(LSHH V201.4 (DOWNSTREAM)		
	GAS BLOW BY.	LEVEL CONTROL FAI	JURE	rc	DM FIÓNI	ID LEVEL	LSLL V1A.		PSV V204 1+2 PSH V204.5 (DOWNSTREAM)	SECONDARY PROTECTION PSV V3.5 AND PSV V3.6 (EXISTING EQUIPMENT DO	AT CV3
	LEAR	DETERIORATION RUPTURE ACCIDENT			W PRESS	SURE AND	PSL V FSV	y17.2	ess		
	· · · · · · · · · · · · · · · · · · ·										
V.	REVISION FIRST ISSUE ISSUED FOR APPROVAL		DATE	BY JIN JIN	APPR.	APPR. BY CLIENT	CLIENT ell aqui	taine no	IT () C. 8) X P.O.80 × 168 400	DI Sizvanger FRIGG	=IEL
L L 3 	REVISED AS NOTED		02/04/81 13/06/81 25/08/81	JIN	7EC 19 14 14		DATE CO 23/03/81 HILE	NSTA JIN	APPR SCALE		norae
	· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·		SAFE (SAT		ALYSIS TABI	Е сн. 05. 1430	- D -
·	••••••••••••••••••••••••••••••••••••••						-	TCP 2	EXTENSION	CI-FF 88 00 00 4	142 weet 2,

中華主

(JUESIRABLE	CAUSE				TABLE TION	PRO	TECTION	ZOMMENTS
No. EVENT				AT COM	1PONENT	PRIMARY	SECONDARY	, CUMMENTS
OVERPRESSURE	BLOCKED OUTLET		HIC	JII PRES	SURE		PSV V201.1+2	OVERPRESSURE NOT POSSIBLE SINCE MAWP IS HIGHER THAN MSWHP.
OVERFLOW	LIQUID INFLOW EXCEEDS LIQUID OUTFLOW LEVEL CONTROL FAILURE		ĦI	3H LIQU	ID LEVEL	LSHН V201.4	11 LSHH 12/3.A 11 LSHH 22/3.A 11 LSHH 32/3.A	SECONDARY PROTECTION AT DOWNSTREAM EXISTING EQUIPME
GAS BLOWBY	LEVEL CONTROL FAILURE		LO	∛ LIQUI	D LEVEL	LSLL V201.5	PSV V204 1 +2 PSH V204.5 (DOUNSTREAM)	
LEAK	DETERIORATION RUPTURE ACCIDENT			V PRESS CKFLOW	URE AND	FSV PSL V201.3	ESS	
•								
V. REVISION 0 FIRST ISSUE 1 ISSUED FOR APPROVAL	DAT 23/03 02/04	/81	JTN	APPR. Tec.	APPR. BY CLIENT	ell aquitaine n	D TGC 8/S P.O.Box 168 40	191 Stavanger FRIGG FIEL
2REV1SED	13/06			43		DATE CONSTR 23403/81 JIN TITLE	APPFI SCALE	
						SAFETY A (SAT)	NALYSIS TAB	
· · · · · · · · · · · · · · · · · · ·						<u>TCP 2</u>	EXTENSION	CH-FF 88 00 00 4142 Sheet

A 15 IQUES - -

and parts

n S TCNER ≪ ⊡

ove	EVENT FPRESSURE RFLOW	CAUSE BLOCKED OUTLET				1PONENT	PRIMARY	SECONDARY	OMMENTS
ove				HIG					· · · · · · · · · · · · · · · · · · ·
	ŔFLOW	1 TOUTS THREAD HEADS			IN PRESS	SURE		PSV V210.1+2	OVERPRESSURE NOT POSSIBLE SINCE MAWP IS HIGHER THAN MSWHP.
		LIQUID INFLOW EXCEE LIQUID OUTLFOW LEVEL CONTROL FAILU		II I G	IN LIQUI	ID PEAEI'	LSHH V210.8	LSHH V211.4 (DOWNSTREAM)	
GAS	BLOWBY	LEVEL CONTROL FAILU	RE	POM	4 FIGAIL) LEVEL	LSLL V210.7	PSH V213.5 PSV V213 1+2 (DOWNSTREAM)	SECONDARY PROTECTION P5H V3.6 PSV V3.5 AND PSV V3.6 AT CV3 (EXISTING EQUIMENT DOWNSTREAM
LEA	ĸ	DETERIORATION RUPTURE ACCIDENT			I PRESSU CKFLOW	IRE AND	PSL V210.1 FSV	ESS	• •
							·		
FIRS	REVISION T ISSUE		DATE 23/03/81 02/04/81		APPR.	APPR. BY CLIENT	elf aquitaine no	PTGC 8.'S P.O. Box 168 40	
REVI	ED FOR APPROVAL SED SED AS NOTED		02704/81 13/06/81 25/08/81	JIN JIN JIN JIN JIN	Tec III IV	2	AIE CONSTR 3,03/81 JIN	APPR SCALE	sofresid norge a.s
	- <u></u>		· · · · · · ·	· · · · · · ·		· · · · · · · · · · · · · · · · · · ·	SAFETY AN (SAT)	VALYSIS TABI	
	· · · · · · · · · · · · · · · · · · ·			· · ·		· · · · · · · · · · · · · · · · · · ·	<u>TCP 2</u>	EXTENSION	CH-FF 88 00 00 4142 Sheet 4/2

中華

JESIRABLE	~ <u></u>					PRO	TECTION		
EVENT	LAUSE	· ·				PRIMARY	SECONDARY		COMMENTS
OVERPRESSURE	BLOCKED OUTLET		HI	GH PRES	SURE		PSV V211.1+2		URE NOT POSSIBLE P IS HIGHER THAN
OVERFLOW	LIQUID OUTFLOW		ΗI	GH L1QU	ID LEVEL	L5HM V211.4	11 LSHH 12/3.A 11 LSHH 22/3.A 11 LSHH 32/3.A	SECONDARY DOWNSTREA	PROTECTION AT M EXISTING EQUIPMENT
gas Blowby	LEVEL CONTROL FA	ILURE	LO	W LIQUI	D LEVEL	LSLL V211.5	PSH V213.5 PSV V213 1+2 (DOWNSTREAM)		
LEAK	DETERIORATION RUPTURE ACCIDENT		ŧ		SURE AND	FSV PSL V211.3	ESS		
									ť.
REVISION FIRST ISSUE		DATE 23/03/81	JIN	TEL	APPR. BY CLIENT	ell aquitaine n	OFUE 8/S P.D.Box 168 - 400	1 Stavanger F	RIGG FIELD
REVISED			JIN	47		DATE GONSTR 23/03/83 JIN TITLE	APPR SCALE	<u> </u>	sofresid norge a.s
	l		· · · · · · · · · · · · · · · · · · ·			SAFETY A (SAT)	NALYSIS TABL	1	05 1430
	OVERPRESSURE OVERFLOW GAS BLOWBY LEAK LEAK REVISION FIRST ISSUE ISSUED FOR APPROVAL	EVENT CAUSE OVERPRESSURE BLOCKED OUTLET OVERFLOW LIQUID INFLOW EX LIQUID OUTFLOW LEVEL CONTROL FA GAS BLOWBY LEVEL CONTROL FA LEAK DETERIORATION RUPTURE ACCIDENT REVISION FIRET ISSUE ISSUED FOR APPROVAL	EVENT LAUSE OVERPRESSURE BLOCKED OUTLET OVERFLOW LIQUID INFLOW EXCEEDS LIQUID OUTFLOW LEVEL CONTROL FAILURE GAS BLOWBY LEVEL CONTROL FAILURE LEAK DETERIORATION RUPTURE ACCIDENT REVISION DAIE FIRET ISSUE 23/03/81 ISSUED FOR APPROVAL 22/04/81	EVENT LAUSE OWERPRESSURE BLOCKED OUTLET HI OVERFLOW LIQUID INFLOW EXCEEDS HI DEVENT LIQUID OUTFLOW HI GAS BLOWBY LEVEL CONTROL FAILURE LC LEAK DETERIORATION LC RUPTURE ACCIDENT BA REVISION DATE BY FIRST ISSUE 23/03/81 JIN	JESHRABLE EVENT CAUSE CLAUSE AT CON AT CON OWERPRESSURE BLOCKED OUTLET HIGH PRES OVERFLOW LIQUID INFLOW EXCEEDS LIQUID OUTFLOW HIGH LIQU GAS BLOWBY LEVEL CONTROL FAILURE LOW LIQUI GAS BLOWBY LEVEL CONTROL FAILURE LOW LIQUI LEAK DETERIORATION RUPTURE ACCIDENT LOW PRESS REVISION DATE BY APPR. FIRET ISSUE 23/03/81 JIN	EVENT LAUSE AT COMPONENT OVERPRESSURE BLOCKED OUTLET HIGH FRESSURE OVERFLOW LIQUID INFLOW EXCEEDS LIQUID OUTFLOW LEVEL CONTROL FAILURE HIGH LIQUID LEVEL GAS BLOWBY LEVEL CONTROL FAILURE LOW LIQUID LEVEL LEAK DETERIORATION RUPTURE ACCIDENT LOW PRESSURE AND BACKFLOW REVISION DAIE BY APPR. APPR. PINET ISSUE 23/03/81 JIM ZEC	JESIRABLE EVENT CAUSE CLUITION AT COMPONENT PRIMARY OVERPRESSURE BLOCKED OUTLET HIGH PRESSURE LIGH PRESSURE LIGH PRESSURE OVERPLOW LIQUID INPLON EXCEEDS LIQUID OUTFLOW HIGH LIQUID LEVEL LSHH V211.4 GAS BLOMBY LEVEL CONTROL FAILURE LOW LIQUID LEVEL LSLL V211.5 LEAK DETERIORATION RUPTURE ACCIDENT LOW FRESSURE AND BACKFLOW PSV PSL V211.3 REVISION DATE BY 3/03/81 APPR. JIN APPR. 23/03/81 CLEWY OATE FINET ISSUE 13/05/81 JIN AFF CONETH 23/03/81 OATE CONETH 23/03/81	JESINABLE EVINT CAUSE CL_JIION AT COMPONENT PRIMARY SECONDARY OVERPRESSURE BLOCKED OUTLET HIGH LOUDD LEVEL PRIMARY SECONDARY OVERFLOW LIQUID INFLOW EXCEEDS LIQUID OUTLOW LEVEL CONTROL FAILURE HIGH LIQUID LEVEL LIGHE 12/3.A LI LIGHE 12/3.A LI LIGHE 12/3.A LI LIGHE 22/3.A LI LIGHE 22/3.A LI LIGHE 22/3.A LI LIGHE 22/3.A LI LIGHE 22/3.A HIGH LIQUID LEVEL LIGHE 12/3.A LI LIGHE 22/3.A LI LIGHE 22/3.A GAS BLOMBY LEVEL CONTROL FAILURE LOW LIQUID LEVEL LSEL V211.5 PSH V213.5 PSV V213.5 LEAK DETERIORATION RUTTURE ACCIDENT LOM FRESSURE AND BACKFLOW FSV FSL V211.3 ESS TEREVISION DATE BY APPR 23/03/61 APPR 23/03/61 CLENT PINERT 1550NE 23/03/61 JIN ZECONDARY PINERT 1550NE 23/03/61 JIN ZECONDARY	JESIRABLE EVENT CAUSE CLUSE CLUSE CLUSE CLUSE PRIMARY SECONDARY OVERPRESSURE BLOCKED OUTLET HIGH PRESSURE PSW V211.1+2 OVERPRESS SINCE MARK OVERPLOW LIQUID INFLOW EXCERDS LIQUID OUTPLOW HIGH LOUID LEVEL LISHH V211.4 II LISHH 12/3.A II LISHH 22/3.A SECONDARY GRS RLONBY LEVEL CONTROL FAILURE LOW LIQUID LEVEL LISL V211.5 PSW V213.5 SECONDARY GRS RLONBY LEVEL CONTROL FAILURE LOW LIQUID LEVEL LISL V211.5 PSW V213.5 SECONDARY LEAK DETERIORATION RUPTURE NCCIOENT LOW PRESSURE AND BACKFLOW PSV PEL V211.3 ESS SES REVISION DATE BY 2/04/AI JII ZMPR. 2/04/AI JII ZMPR. 2/04/AI APPR. 2/04/AI A

. . .

	(INDESIRABLE	CAUSE				TABLE	-		ECTION) COMMENTS
	EVENT		· · · · · · · · · · · · · · · · · · ·			PONENT		PRIMARY	SECONDARY		
	OVERPRESSURE	BLOCKED OUTLET (CONDENSATE + METHANOLATE)	ATER)	HIC	GH PRES	SURE		PSH V204.5 (DOWNSTREAM)	PSV V204. 1+2 (Downstream)		
	OVERFRESSURE	BLOCKED OUTLET (GLYCOL)		HIC	3H PRESS	SURE				MAX. IS LE	CTION NOT REQUIRED SINC PUMP DISCHARGE PRESS SS THAN PIPING DESIGN
	LEAK (INTERNAL)	DETERIORATION RUPTURE		#10 511		SURE ON SHEL	L			PRESS PROTE THE E CV17 SYSTE	CTION NOT REQUIRED SINU XISTING GLYCOL LINE TO A/B/C IS USED AS RELIEF
	LEAK (EXTERNAL)	DETERIORATION RUPTURE ACCIDENT		POI	1 PRESSI	JRE	j	PSL V204.3 CONDENSATE LIN DOWNSTREAM) PSL-P220A.1/ PSL-P220C.1	ESS 3		
	EXCESS TEMPERATURE	EXCESS HEAT INPUT		HIC	3H TEMP			GLYCOL LINE UPSTREAM) TSH-E203.5		REQUIR	ONLARY PROTECTION ED SINCE MAX. BUILT UP RE IS BELOW DESIGN RE OF TUBES AND PIPING.
NO.	FIRST ISSUE		DATE 23/03/81 02/04/81		APPR.	APPR. BY CLIENT	CLIEN		99 8/S P.O.Dox 168 40	01 Stavenger	FRIGG FIELD
01 02 03	REVISED		3/06/81 25/08/81	JIN JIN	87 128		DATE 3/03 TITLE	CONSTR. 1/81 JIN	APPA. SCALE		sofresid norge a.
							1	SAFETY AN (SAT)	ALYSIS TAB	LE	CH 05 1430
۰۰۰ ۵ ۰۰ م							1	<u>tcp2</u> E	XTENSION	C	
	8 7	6			L! 5		4	T .	<u>, </u>	2	1

.

÷

	8 7	6			5		<u>ICP2</u>	EXTENSION 3	2	- FF 88 00 0	0 4142 Sheet 7/ 1
							SAFETY AN (SAT)			CH 05 143	30
2	REVISED REVISED AS NOTED		13/06/81 25/08/81		NF N	23	7/03/81 JIN			S sofre	síd norge a
)	FIRST ISSUE ISSUED FOR APPROVAL		23/03/81 02/04/81	JIN JIN	ner na		elf aquitaine no	190 8/S P.O.Box 168	<u> </u>	1	· · · · · · · · · · · · · · · · · · ·
V.).	REVISION	<u>_ </u>	DATE	BY	APPR.	APPR. BY ° CLIENT	LIENT	1, ,			FIEL
				,							
					14						
	EXCESS TEMPERATURE	EXCESS HEAT INF	UT	EI I	IGH TEM	р	(GLYCOL LINE UPSTREAM) TSH-E211.5	,	REQUIR	ONDARY PROTE ED SINCE MAX RE IS BELOW RE OF TUBES	. BUILT UP DESIGN
		ACCIDENT					DOWNSTREAM) PSL P2208.1 / PSL P220C.1	3			
	LEAK (EXTERNAL)	DETERIORATION RUPTURE		Te	DW PRES	SURE	PSL V213.3 (CONDENSATE LIN	ESS			
	· LEAK (INTERNAL)	RUPTURE			IDE	STORE ON SUBL			PROTEC THE EX	TION NOT REC ISTING GLYCC /B/C IS USED	L LINE TO
	OVERPRESSURE	(CONDENSATE + METHANOLA BLOCKED OUTLET (GLYCOL) DETERIORATION	fed Water)		IGH PRE	SSURE SSURE ON SHELL	(DOWNSTREAM)	(DOWNSTREAM)	MAX. P	TION NOT REQ UMP DISCHARG S THAN PIPIN	E PRESSURE
	OVERPRESSURE	BLOCKED OUTLET	3	H)	IGH PRE		PSH V213.5	PSV_V213_1			
	EVENT	CAUSE			COND	VABLE NTION MPONENT	PRIMARY	SECONDARY		COMME	NTS

1

10.42-CL S 4

÷

л ў.

t ger

(JESIRABLE		Dr TABLE	PROT	TECTION	
EVENT	CAUSE	EU. WITION AT COMPONENT	PRIMARY	SECONDARY	JMMENTS
OVERPRESSURE	INFLOW EXCEEDS OUTFLOW BLOCKED OUTLET	HIGH PRESSURE	PSH V204.5	PSV V204.1+2	
OVERFLOW	LIQUID INFLOW EXCEEDS LIQUID OUTFLOW LEVEL CONTROL FAILURE	HIGH LIQUID LEVEL	LSH V204.5	LS!! V 7.4	SECONDARY PROTECTION AT EXISTING LP VENT SCRUBBER (ALARM ONLY)
GAS BLOWBY (CONDENSATE LINE)	LEVEL CONTROL FAILURE	FOM FIGNID FEAEF	LSL V204.2	PSV V3.5 and V3.6	SECONDARY PROTECTION AT DOWNSTREAM COMPONENT V3 OR CV3 (EXISTING EQUIPMENT)
GAS BLOWBY (WATER LINE)	LEVEL CONTROL FAILURE	LOW LIQUID LEVEL	LSL V204.2	PSH V220.3 PSV V220.1/2 (DOWNSTREAM)	
LEAK	DETERIORATION RUPTURE ACCIDENT	LOW PRESSURE AND BACKFLOW	FSV PSL V204.3	ESS	
EXCESS TEMPERATURE	EXCESS HEAT INPUT	HIGH PROCESS TEMPERATUR	TSH E203.5		EXCESS TEMP ONLY POSSIBLE IN CASE OF BLOCKED OUTLETS. ANY PRESSURE BUILT UP WILL BE RELEASED THROUGH PSV V204.1+2.
REVISION FIRST ISSUE ISSUED FOR APPROVAL	DATE. 23/03/81 02/04/81	BY APPR. CLIENT	elf aquitaine no	Г ТДС А/Ѕ Р.О.Вох 168 - 40-	
REVISED	13/06/81		03/81 JIN	APPR. SCALE	sofresid norge a.s
				IALYSIS TABI	
			<u>TCP 2</u>	<u>EXTENSION</u>	CH-FF 88 00 00 4142 Sheet 8/28

(31 F	t			D	TABLE	PRO	ECTION			
EVENT		CAUSE				.tion Mponent	PRIMARY	SECONDARY	JMMENTS		
OVERPRESSU	RE	INFLOW EXCEEDS OUT BLOCKED OUTLET	(FLOW	HIG	H PRES	SURE	PSH V213.5	PSV V213.1+2	<u>Å</u>		
OVERFLOW		LIQUID INFLOW EXC LIQUID OUTFLOW LEVEL CONTROL FAII		HIG	IN LIQU	ID FRAEF	LSH V213.5	LSH V 7.4	SECONDARY PROTECTION AT EXISTING LP VENT SCRUBBER (ALARM ONLY)		
GAS BLOWBY (CONDENSAT)	E LINE)	LEVEL CONTROL FAII	JURE	. LOW	I LIÕNII	D FEAEP	LSL V213.2	PSV V3.5 AND V3.6	SECONDARY PROTECTION AT DOWNSTREAM COMPONENT V3 OR CV3 (EXISTING EQUIPMENT)		
GAS BLOWBY (WATER LIN		LEVEL CONTROL FAIL	JURE	LOW	I LIQUII	D LEVEL	LSL V213.2	PSH V220.3 PSV V220.1/2 (DOWNSTREAM)			
PEAK		DETERIORATION RUPTURE ACCIDENT			PRESS RFLOW	URE AND	FSV PSL V213.3	ESS			
EXCESS TEM	EXCESS TEMPERATURE EXCESS HEAT INPUT			нто	ih proci	ESS TEMPERATURE	тян E211.5		EXCESS TEMP ONLY POSSIBLE IN CASE OF BLOCKED OUTLETS. ANY PRESSURE BUILT UP WILL BE RELEASED THROUGH PSV V213.1+2.		
/. FIRST ISS ISSUED FO	REVISION UE R APPROVAL		DATE 23/03/81 02/04/81	BY JIN JIN	APPR.	APPR. BY CLIENT	elf aquitaine no	Г			
REVISED REVISED A			13/06/81 25/08/81	JIN	49	23	TE CONSTR. /03/81 JIN TLE	APPR SCALE	sofresid norge a.s		
· ·							SAFETY AN (SAT)	IALYSIS TAB	LE CH 05 1430		
							<u>TCP 2</u>	<u>EXTENSION</u>	DRWG NO CH-FF 88 00 00 4142 Sheet 9/2		

. L (1977) (

a. A series a series d'antista de la serie da series de la serie da series da series da series da series de series

́1	TEM NO 226	SERVILL	RELIEF SCRU	BBER	FLOW (DIAGRAM RE	FERENCE	FF 88 00 04 5090	REV.5
F	UNDESIRABLE	CAUSE		DL T	ABLE	PR		Сомме	NTS
	EVENT			AT COM		PRIMARY	SECONDARY		
	OVERFLOW	LIQUID INFLOW EXCEEDS LIQUID OUTFLOW	5 H	IGH LIQUI	D LEVEL	LSH V226.2 (ALARM ONLY)		PROTECTION NOT RE VESSEL IS ONLY US OF EMERGENCY (FIF DOWN).	ED IN CASE
E	GAS BLOWBY	LEVEL CONTROL FAILURE	s i ro	DM FIÖNID) LEVEL	LSL V226.3	VENT	VENT AT DOWNSTREA CV 13 SUMP CAISSC	
	OVERPRESSURE	BLOCKED OUTLET	F1	IGH PRESS	SURE	PSH V226.2		ALARM ONLY PROTECTION NOT REX MAX BUILT-UP BACK IS LESS THAN VESSI	PRESSURE
D	LEAK	DETERIOZATION RUPTURE ACCIDENT	1	OW PRESS ACKFLOW	URE		ESS	PRESSURE PRESSURE PRIMARY PROTECTION SINCE VESSEL COULD ATMOSPHERIC CONDI- IN SERVICE	V NOT REQUI NORK NEAR
с									
в		 			1000 DV	GLIENT			
	EV. REVISION 10. PIRST ISSUE	26/0	ATE BY	APPR TEC	APPR. BY CLIENT		norge		9 FIEL
·	01 REVISED 02 REVISED AS NOTED	13/ 25/1	06/81 JIN 08/81 JIN	Hr.		DATE CONSTR 26,'03/8. JIN TITLE	APPR SCALE	sofr	esid norge a
A						SAFETY A (SAT)	NALYSIS TAE	SLE CH 05	
	un de la companya de La companya de la comp					TCP	2 EXTENSION	DAMG NO. CH-FF 88	00 00 4142 Sheet 1

中静之

(UNDESIRABLE	CAUSE			U E	CTABLE		DTECTION	88 00 10 5033 REV. 6	
	EVENT	CAUSE				DITION MPONENT	PRIMARY	SECONDARY	COMMENTS	
	OVERPRESSURE	INFLOW EXCEEDS OUTF BLOCKED OUTLET	LOW	HIGH	I PRESSI	URE	PSH V220.3	PSV V220.1+2		
	OVERFLOW	LIQUID INFLOW EXCEE LIQUID OUTFLOW LEVEL CONTROL FAILU		HIGH	LIQUII	D LEVEP	LSII V220.6	LSH V 7.4	SECONDARY PROTECTION AT EXISTING LP VENT SCRUBBER	
	,								(ALARM ONLY)	
	GAS BLOWBY (CONDENSATE LINE)	LEVEL CONTROL FAILU	RE	LOW	LIQUID	LEVEL	LSL V220.7	PSV V5.4+5	SECONDARY PROTECTION AT DOWNSTREAM CV5 (EXISTING EQUIPMENT).	
	GAS BLONBY (METHANOLATED WATER LINI	LEVEL CONTROL FAILU	RE	POM	LIQUID	LEVEL	LSI, V220.2		NO SECONDARY PROTECTION REQUIRED SINCE DOWNSTREAM PIPELINE DESIGN PRESSURE IS GREATER THAN ANY GAS BLOWBY PRESSURE	
	LEAK	DETERIORATION RUPTURE ACCIDENT		LOW I BACKI	PRESSUR FLOW	E AND	FSV PSL V220.4	ESS		
V))	REVISION FIRST ISSUE ISSUED FOR APPROVAL		DATE 23/03/81 02/04/81	JIN JIN	APPR.	APPR. BY CLIENT	elf aquitaine n	DTDE A'S PORos 168-40	201 Stavanger FRIGG FIELD	
2	REVISED		13/06/81	JIN	87		DA'E CONSTR 23,03/81 JIN 111 E	APPR SCALE	sofresid norge a.s	
·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	··· · · · ·	· · · · ·		SAFETY A (SAT)	NALYSIS TAB	LE CH 05 1430	
	· · · · · · · · · · · · · · · · · · ·	······································	······································			· · · · · · · · · · · · · · · · · · ·	<u>TCP 2</u>	EXTENSION	DRWC NG CH-FF 88 00 00 4142 Sheat 11/ 21	

n Carrier S A

٢

UNDESI	RABLE	CALLER				ABLE	PR	OTECTION		; A MARAITE
E VE		CAUSE			AT COND	ITION MPONENT	PRIMARY	SECON	DARY	LUMMENTS
OVERPRESS -	URE	BLOCKED OUTLET		NIG	H PRESS	URE	VENT+ SPARK ARRESTOR		SINC FILL ATMO	THER PROTECTION REQUIRE E THE VESSEL IS MANUALL ED AND OPERATING AT SPHERIC CONDITIONS. EM NOTIN CONTINUOUS ICE.
								· .		
		· ·								14. -
V.). FIRST 16	REVISION	3	DATE 26/03/81		APPR.	APPR BY CLIENT	CLIENT elf aquitaine	norge a/s p.o.:	Box 168 - 4001 Stavenge	FRIGG FIEL
REVISED	5SUE		13/06/81	JIN JIN	87 		DATE 26/03/8 JIN TITLE	АРРЯ	SCALE	sofresid norge a
					•		SAFETY A	NALYSIS	TABLE	CH 05 1430
							ТГР	2 EXTENSI	ŃŇ	DNWG NO. CH-FF 88 00 00 4142 Sheet 12

18 TC-05409

	IDESIRABLE				Du	TABLE		PRC	TECTION			/ 	ite.
0	EVENT	CAUSE			COND AT CON	ITION 1PONENT	F	RIMARY	SECO	VDARY		COMMEN	
ovi	FPRESSURE -	BLOCKED OUTLET		H	IGH PRE	SSURE	ទ	ENT+ PARK RRESTOR			SINCE THE FILLED ATMOSPH	R PROTECTIO HE VESSEL I AND OPERATI ERIC CONDIT NOT IN CONT	S MANUALLY NG AT IONS.
													,
		e										ŧ	
	REVISION ST 1550E			BY JIN	APPR. 702	APPR. BY CLIENT	ссіент elf ғ 	iquitaine n	orge a/s P	.C.Box 168 - 40	101 Stevenger	FRIGG	FIELD
)1 REVI	SED		13/06/81		\$7		DATE 26/03/8		APPR,	SCALE	· · · · ·	S sofre	sid norge a.s
						· · · · · · · · · · · · · · · · · · ·		FETY A AT)	NALYSIS	TAB	LE	CH 05	
								<u>TCP 2</u>	EXTEN	<u>SION</u>		GH-FF 88 00	00 4142 Sheet 13/2

中的心

ŗ

5. 1582.2 11 (

	UNDESIRABLE	CAUSE			DL CONDI	TABLE	PRI	DTECTION		COMMENT	۲ ς
	EVENT					IPONENT	PRIMARY	SECONDARY			
	OVERPRESSURE	BLOCKED DISCHARGE L	INE	HIG	H PRESS	URE		PSV P225 A.1	SINCE S	R PROTECTION YETEM IS MAN D. NOT IN C	UALLY
	LEAK	RUPTURE DETERIORATION ACCIDENT			PRESSU AND KFLOW	RE	FSV		ONLY SM	ALL AMOUNTS	
			:								
		-									
			-	•							
/.	REVISION FIRST ISSUE	2	DATE 6/03/81	_JIN_	APPR.	APPR. BY CLIENT	CLIENT ell aquitaine 1	101YO A/S P.O.Bax 168 4	1001 Stovbrijer	FRIGG	FIEL
	REVISED REVISED AS NOTED	2	3/06/81 15/08/81	JIN JIN	4 4		DATE CONSTR. 26/03/81 JIN TITLE	APPR. SCALE		SS sofres	id norge
						· · · · · · · · · · · · · · · · · · ·	SAFETY A (SAT)	NALYSIS TAE		CH 05 1	430
							TCP 2	<u>EXTENSION</u>	D	AWG NO. CH-FF 88 00	00 4142 Sheet 14

,你就是你们,你们就你就是你你的。""你们你就是你们的,你就是你的我们,你们就要你你的你,你是我做我们都没有了。""你是你,你是你们都是你的你,你们还能能能了。"

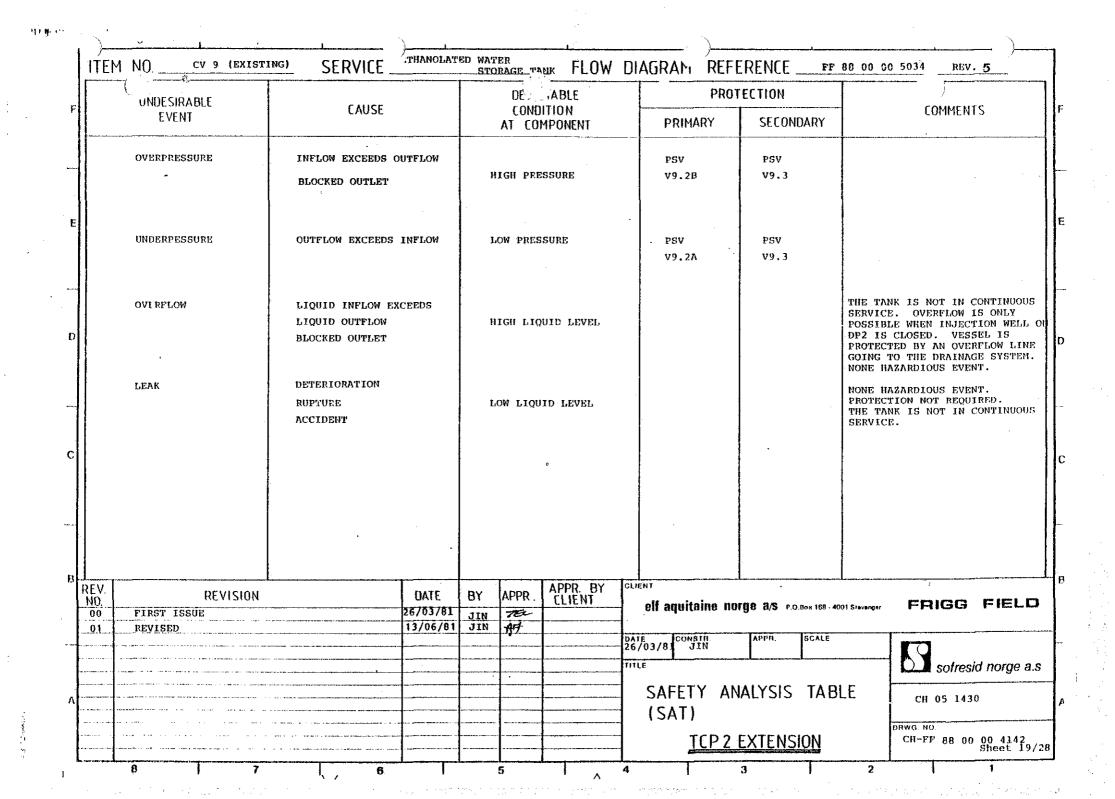
.

.

	ITEM NO CP 225 B		or pump FLOW DI	AGRA REFE	RENCE	88 00 10 5033 REV.
F	UNDESIRABLE EVENT	CAUSE	DE ABLE CONDITION AT COMPONENT	PROTE PRIMARY	CTION SECONDARY	COMMENTS
	OVERPRESSURE	BLOCKED DISCHARGE LINE	HIGH PRESSURE		PSV P225 B.1	NO OTHER PROTECTION REQUIRED SINCE SYSTEM IS MANUALLY OPERATED. NOT IN CONTINUOUS SERVICE.
E	LEJ K	RUPTURE DETERIORATION ACCIDENT	LOW PRESSURE AND BACKFLOW	FSV		ONLY SMALL AMOUNTS
D						
c		ч.				
						3
B -	REV. NO 00 FIRST ISSUE 01 REVISED	. DATE 26/03/81 13/06/81	BY APPR. CLIENT	elf aquitaino norg	10 21/S P.O. Box 158 400	
	02 REVISED AS NOTED	13/06/81 25/08/81	JIN 44- JIN 26, TIN 111	/03/8. JIN Le	APPN. SCALE	sofresid norge a.s
A -				SAFETY ANA (SAT)		CH 05 1430
-	8 7	G	5 4	<u>TCP2E</u>	XTENSION	CH-FF 88 00 00 4142 Sheet 15/ 28

.

•


UNDESIRABLE	<i></i>	DE ABLE	PRO	TECTION)
EVENT	CAUSE	CONDITION AT COMPONENT	PRIMARY	SECONDARY	COMMENTS
overpressure •	INFLOW EXCEEDS OUTFLOW BLOCKED OUTLET	HIGH PRESSURE	PSV V23.1A	PSV V23.3	
UNDERPRESSURE	WITHDRAWALS EXCEEDS INFLOW	LOW PRESSURE	PSV V23.1B	PSV V23.3	
OVERFLOW	LIQUID INFLOW EXCEEDS LIQUID OUTFLOW	HIGH LIQUID LEVEL			OVERFLOW CF THE TANK CAN ONLY OCCUR DURING FILLING OF THE UNIT. THIS IS DONE MANUALLY AND THE VESSEL IS PROTECTED BY AN OVERFLOW LINE GOING TO THE DRAINAGE SYSTEM.
LEAK	DETERIORATION RUPTURE ACCIDENT	FOM FIGNID FEAEF			PROTECTION NOT REQUIRED SINCE THE FEED TO THE VESSEL IS THE FILLING LINE. THIS IS OPERATEL MANUALLY AND IS NOT IN CONTINU- OUS SERVICE.
			CLIENT		
REVISION FIRST ISSUE REVISED	DATE 26/03/81 13/06/81	BY APPR. APPR. B) CLIENT JIN 700-	elf aquitaine n	Drge 0/S P.O.Box 168	
			SAFETY A	NALYSIS TAE	sofresid norge a.s
				NALYSIS TAE	31 5

	UNDESIRABLE				Ö.	TABLE	DIAGNAM REF	TECTION	
	EVENT	CAUSE				HTION MPONENT	PRIMARY	SECONDARY	COMMENTS
	OVERPRESSURE	BLOCKED DISCHARG	E LINE	HI	GH PRES	SSURE	PSH P12.4	PSV 12.3+4	
	LEAK	RUPTURE DETERIORATION ACCIDENT			W PRESS AND CKFLOW	SURE	PSL 12.5 FSV	ess	
)									
REV NO. 01			DATE 26/03/81 13/06/81	BY JIN JIN	APPR.	APPR BY CLIENT	elf aquitaine no)TGB 8/S P.O.Box 168 4001	
							0AIE CONSTA. 26:03/81 JIN TITLE	APPA. SCALE	sofresid nor
							SAFETY AN (SAT)	VALYSIS TABL	
							1	EXTENSION	DRWG. NO. CH-FF 88 00 00 4

	UNDESIRABLE				DL	ABLE	· [PROT	ECTION				
	EVENT	CAUSE				ITION MPONENT		PRIMARY	SECON	DARY		LOMMEN	TS
			4		********* * *********					М	ETHANOL E PROVII	INJECTION P DED LATER IF	ACKAGE WILL NECESSARY.
		•								J			
₹EV. NO. 00	REVISION FIRST ISSUE	· · · · · · · · · · · · · · · · · · ·	DATE 26/03/81	JIN	APPR.	APPR. BY CLIENT	GLIEN	, tl aquitaine nor	98 8/5 P.O.	Bok 168 - 4001	Stevenger	FRIGG	FIELD
01	REVISED		13/06/81	_JIN	47		DATE 26/0 TITLE	CONSTR. 03/8 JIN	APPN.	SCALE		S sofres	id norge a.s
				· · · · · · · · · · · · · · · · · · ·				SAFETY AN (SAT)	ALYSIS	TABL	ļ.	CH 05 14	
						· · · · · · · · · · · · · · · · · · ·	-	<u>TCP 2 8</u>	EXTENSI	ON	I.	08WG.NO. CH-FF 88 00	00 4142 Sheet 18/2

a. See also a substantia substantia substantia muuta substantia qui consultatia substantia estena esperantia espe

A.S. TORROPH

ne por s

:

n ∎

ΈM	NO. <u>CP 222 A/B</u>	SERVIC	ETHANOLATE	INJE	CTION P	UMPS FLOW	DIAGR AN REF		FF 88 00	00 5034 REV. 5
	UNDESIRABLE					TABLE	PRO	DTECTION		/ COLUMNITC
	EVENT	CAUSE			CONDI AT CON	1PONENT	PRIMARY	SECONDARY		
	OVERPRESSURE	BLOCKED DISCHARG	LINE	HIC	3H PRES	SURE			MAX PU	D PSV NOT REQUIRED SI MP DISCHARGE PRESSURE OT EXCRED RATED WORKI RE ON DISCHARGE PIPJN
	LEAK	RUPTURE DETERIORATION ACCIDENT		ł	V PRESSU AND CKFLOW	URE	PSL M9.3 AND FSV		REQUIR	ARY PROTECTION NOT ED SINCE THE EVENT IS ZARDIOUS.
					ν.					
				1.						
						•			r I	
						,				
	·						CLIENT			
V).	REVISION FIRST ISSUE		DATE 26/03/81	JIN	APPR.	APPR. BY CLIENT		OTGO A/S P.O.80x 168	4001 Stavanger	FRIGG FIEL
	REVISED		3/06/81	JIN	<u>87</u>		DATE CONSTR. 26,03/8L JIN	AFPR. SCALE		sofresid norge
							SAFETY A	NALYSIS TAE	BLE	
							(SAT)			CH 05 1430
							TCP 2	EXTENSION		CH-FF 88 00 00 414 Sheet

.

a service a second second second second second second second where the second second second second second secon

.

1	TEM NO	SERVIL)	GLYCOL FJ	LL PUM	P	_ FLOW	DIAGR.			. FF 8	18 00 00 5034 REV.5
	INDESIRABLE	CANCE				TABLE		PROT	ECTION		LOMMENTS
F	EVENT	CAUSE			COND AT CON	1PONENT	PR	IMARY	SECON	DARY	CUMICALS
	OVERIRESSURE	BLOCKED DISCHARGE	LINE	HIG	H PRESS	URE				SIN PRE WOF	I AND PSV IS NOT REQUIPED NCE MAX PUMP DISCHARGE SSURE IS LESS THAN THE RATER RKING PRESSURE ON DISCHARGE PING.
ε	LEAK	RUPTURE DETERIORATION ACCIDENT			PRESSU AND KFLOW	RE	FSV			OPE	J NOT REQUIRED SINCE ERATING PRESSURE IS NEAR MOSPHERIC.
D				1 9 9							
c			-								
					-						
					•						
B	REV. REVISION NO. REVISION	·	DATE 26/03/81	BY	APPR.	APPR BY CLIENT	CLIENT elf aqu	litaine noi	r ye a/s p.o.	Box 168 - 4001 Stav	FRIGG FIELD
	01 REVISED		13/06/81	JIN	-1357		DATE C 26/03/81	ONSTR.	APPR.	SCALE	
E		······				······································	TITLE			L	sofresid norge a.s
A -			· · · · · · · · · · · · · · · · · · ·				SAFE (SA		ALYSIS	TABLE	СН 05 1430
						······			<u>EXTENSI</u>	<u>on</u>	DRWG NO. CH-FF 88 00 00 4142 Sheet 20, 2

.

HOMESCI OF

].	ITEM NO 220 N/B/C	SERVICE	CIRCULATION	PUMPS	FLOW DI	IAGRÁ		FF 88 00 00 503	4 RE }
F	UNDE SIRABLE EVENT	CAUSE		DL CONDIT AT COMP	10N -	PRO1 Primary	ECTION SECONDARY	- 60) MMENTS
	OVERPRESSURE	BLOCKED DISCHARGE LINE		H PRESSU		· · ·		MAX PUMP DISCH	D RATED WORKING
E	LEAK	RUPTURE DETERIORATION ACCIDENT		PRESSUR AND KFLOW	E	FSV PSL P220A.1/ P220B.1/ P220C.1	-	NO SECONDARY PI REQUIRED SINCE IS NOT HYDROCAL	THE LIQUID
D									
c		• •							
Ľ	REV. REVISION NO. FIRST ISSUE	26/0	03/81 JIN	70-	APPR. BY CU	elf aquitaine no	rg@ a/s p.o.Box 168 • 4	1001 Stavinger FRI	GG FIELD
	01 REVISED	13/1	/06/81 JIN		DA 26 	/03/81 JIN	APPR. SCALE		sofresid norge a.s
		· · · · · · · · · · · · · · · · · · ·				SAFETY AN (SAT)	IALYSIS TAE	SLE CH O	5 1430
						<u>TCP 2</u>	EXTENSION		88 00 00 4142 Sheet 22/28

2

A 5 TJRRCP

्री	FEM NO	SERVIL ME	THANOLAT	ed Wati Draina	SR Se. Tank	_ FLOW	DIAG	Refe	RENCEF	88 00 10	5100 REV. 4
	(UNDESIRABLE					ABLE		PROT	ECTION		,
	EVENT	CAUSE			COND AT COI	TION 1PONENT		PRIMARY	SECONDARY		COMMENTS
	OVERPRESSURE	BLOCKED DISCHARGE		HJ	tgh PRE	SSURE		VENT+ SPARK ARRESTOR		SINCE THE MANUALLY CONDITION	PROTECTION REQUIRE E VESSEL IS OPERATE NID AT ATMOSHPHERIC VS. THE SYSTEM IS NO VUOUS SERVICE.
	OVERFLOW	LIQUID INFLOW EXC LIQUID OUTFLOW	EEDS	HI	IGH LIQ	UID LEVEL	(VENT LSHH V222.3)		LSHH V22	2.3 GIVES ALARM ON
	Гелк	DETERIORATION RUPTURE ACCIDENT		LC	M FIĞA	ID LEVEL				CV 222 1	CARDIOUS EVENT.
								×			
RE NC	0 FIRST ISSUE		DATE 26/03/81	JIN	APPR.	APPR BY CLIENT	CLIENT - CLIENT	f aquitaine nor	90 8/S P.O.Box 168 - 4	001 Stavengar	FRIGG FIEL
_0			13/06/81 25/08/81	JIN	761- 44 01		DAIE 26/03	CONSTR. /81 JIN	APPH. SCALE		sofresid norge
			·····					AFETY AN SAT)	ALYSIS TAE		сн 05 1430
						·	_	TCP 2 I	EXTENSION	. 01	CH-FF 88 00 00 4142 Sheet 23

 \sim 1. The second s

Mat	1 NO. <u>CP 224</u>	SERVIC	RAINAGE 1	ANK PU	JMP	FLOW	DIAGRA.	, ⁾ REF	ERENCE	FF 88	00 10 5100 REV. 4
	UNDESIRABLE EVENT	CAUSE			COND	ltion Mponent	PRIN	PRO 1ARY	SECONDA	RY	COMMENTS
OVI DE	ERPRESSURE AK	BLOCKED DISCHARGI RUPTURE DETERIORATION ACCIDENT	5 LINE	FO	GH PRES W PRES CKFLOW	SURE SURE AND	FSV			MAX PU WILL N PRESSU PSL AN NOT RE	D ISV NOT REQUIRED SINCE MP DISCHARGE PRESSURE OT EXCEED RATED WORKING RE ON DISCHARGE PIPING. D SECONDARY PROTECTION QUIRED SINCE NONE IOUS EVENT.
		·			- j						
EV. NO. 00	REVISION		DATE 26/03/81	BY	APPR.	APPR. BY CLIENT	elf aqui	itaine no	rge a/s P.O.Bo	168 - 4001 Stavanger	FRIGG FIELD
01	REVISED		13/06/81	JIN	A.1-		DATE CO 26.03/81 TITLE	NSTA. JIN	APPR S	GALE	sofresid norge a.s
······							SAFE (SAT		IALYSIS -	TABLE	CH 05 1430
•••••••••••					-	-	1		EXTENSIO	N	DRWG NO. CH-FF 88 00 00 4142 Sheet 24/21

	(SIRABLE	CAUSE			DET	ABLE		PRO	TECTION		
	EVENT	CAUSE			AT CO	ION MPONENT		PRIMARY	SECONDARY		AMENTS
	OVERPRESSURE	BLOCKED LINE		HI	GH PRES	SURE				OVER SINC MSWH	PRESSURE NOT POSSIBI E MAWP IS HIGHER TH/ P
	LEAK	DETERRIORATION RUPTURE ACCIDENT			W PRESS CKFLOW	URE		PSL M201.1 FSV	ess		
								. · · · ·			
			ļ								
	REV. REVISION NO. FIRST ISSUE		DATE 13/06/81		APPR.	APPR. BY CLIENT			rge a/s P.O.Box 168 - 400	1 Støvenger	FRIGG FIEL
				· · · · · · · · · · · · · · · · · · ·			DATE 13/ TITLE	06/B JIN	APPR. SCALE		solresid norge
								SAFETY AN (SAT)	IALYSIS TABL	E	CH-05 1430
-				· · · · · · · · · · · · · · · · · · ·				TCP 2	<u>EXTENSION</u>	fo I	RW8. NO. CH-FF 88 00 00 414

and a second second second second we were a second second second second second second second second second sec

÷

	(ESIRABLE	,		DET ABLE CON ION AT COMPONENT			PR	DTECTION	Iments
	EVENT	CAUSE	PRIMARY				SECONDARY		
	OVERPRESSURE LEAK	BLOCKED LINE DETERIORATION		HIGH PRESSURE Low Pressure Backflow			PSL M210.1	ESS	OVERPRESSURE NOT POSSIBLE SINCE MAWP IS HIGHER THAN MSWHP
	, ,	RUPTURE ACCIDENT					FSV		
		,							
•									
						0			
	-				`				
REV. NO. 10	REVISIO FIRST ISSUE	······································	DATE 3/06/81		APPR.	APPR. BY CLIENT	CLIENT elf aquitaine r	10198 8/5 P.O.Box 168 400	1 Stayanger FRIGG FIEL
							DATE CONSTR. 13/06/01 JIN TITLE	APPR. SCALE	sofresid norge a
		· · · · · · · · · · · · · · · · · · ·		······································		· · · · · · · · · · · · · · · · · · ·		NALYSIS TABL	E
							(SAT)	<u>2 Extension</u>	CH-05 1430 DRWG NO. CH-FF 88 00 00 4142

a a series de la companya de la comp La companya de la comp

(ESIRABLE					ABLE		PROT	TECTION		
EVENT	CAUSE		• •		ATON MPONENT	1	PRIMARY	SECONDARY		AMENTS
OVERPRESSURE	BLOCKED LINE PLUGGED FORMATION		HIGH	PRESSU	RE		de la como de color como de como		MAX INJEC	NNOT REQUIRED SINCE
LEAK	DETERIORATION RUPTURE ACCIDENT		LOW BACK	PRESSUF FLOW	E		PSL M9.3 FSV		LESS THAN OF THE PI	I THE WORKING PRESSURI PING
			- - - -							
			l.							
·										
V. REVISION FIRST ISSUE	DN	DATE 13/06/81 25/08/81	BY JIN JIN	APPR	APPR. BY CLIENT	CLIENT elf (aquitaine no	1 ITGO A/S P.O.80x 168 - 44	201 Stavanger	FRIGG FIELD
D1 REVISED AS NOTED		23/06/01	010	ef.		DATE 13/06/8 TITLE	CONSTR.	APPH. SCALE		sofresid norge a.s
						1		ALYSIS TAB) sofresid norge a.s
							AT)		c	H 05 1430 wg. Nd.
	9 - 14 Minuternalis dan di dan kalan dan antan yang dan di dan Kalanda dan yang dan di dan	-		<u> </u>		1	<u>TCP 2</u>	<u>EXTENSION</u>		H-FF 88 00 00 4142 Sheet 27/28

. .

	C ALLOS		P TABLE PROTECTION		PROTECTION			
EVENT	CAUSE			AT CO	ITION MPONENT	PRIMARY	SECONDARY	DMMENTS
OVERPRESSURE	BLOCKED LINE		HIGH	I PRESS	JRE	PSH P12.4		SECONDARY PRETECTION NOT REQUIRED SINCE MAX PRESSURE IS LESS THAN THE WORKING
LEAK	DETERIORATION RUPTURE ACCIDENT			PRESSU FLOW	RE	PSL P12.5 FSV	ESS	PRESSURE OF THE PIPING
			- - -					
				i q				
	- -	-						
								· · ·
V. REVISION		DATE	BY	APPR.	APPR. BY CLIENT	CLIENT elf aquitaine	10198 8/5 1.0.80× 168 - 4	001 Blavenger FRIGG FIELD
0 FIRST ISSUE						DATE CONSTR.	APPR. SCALE	
	· · · · · · · · · · · · · · · · · · ·			 		13/06/81 JIN		sofresid norge a.s
	ـــــــــــــــــــــــــــــــــــــ					SAFETY A (SAT)	NALYSIS TAB	CH 05 1430
					· · · · · · · · · · · · · · · · · · ·		<u>EXTENSION</u>	08wG NO CH-FF 88 00 00 4142 Sheet 28/28

AS TOPPACIT

į

.

APPENDIX 5

SAFETY ANALYSIS FUNCTION EVALUATION CHART

	PLAT	EVALUATIC (SAF	ENTIFICATION	T DOWN OR FUNCTION EDUIP EDUIP OR LINE ENOLOGE BON EALINE CRONES STR BLOW DOWN C 2012/ESTR BLOW DOWN	LLIDE CULOS CONC LLIDE CULOS CON LLIDE CUCE CON LLIDE CON LLIDE CON LLIDE HEN	CRIDERT GLOSE ME SEALINE CRIDERT GLOSE ME SEALINE CRIDERT ROW DOWN VIE CLOSE GAS MALET CYTO CYTO CLOSE CONC.	HING COND C	STOP WETH, TO NET START FARE WATER, TO NET START FARE WATER FUNDE STOP TED RANAGE LAWE ALLE STOP TED RANAGE LAWE ALLE MAIN RELATED RANAGE LAWE ALLE MAIN RANAGE LAWE ALLE STOP TED RANAGE LAWE ALLE MAIN RANAGE ALLE MAIN
		1		HE ON INTERNA			2351 C2 2251 C2 251 C	1
	CP 2000 6P5 20"P	PRESSURE IN ODIN WET GAS HEADER	NUMBER PSL-M 2011 CH - FF 88 00004142 PSL-M 2012 SHI 25/28 FSV		△	100 100 100 100 100 100 100 100 100 10	4 8 8 8 8 9 5 7 7 7 9 9 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8	7 X X X X X X X X X X X X X X X X X X X
Norm Norm Norm Norm N	CVIA	PRESSURE PRORECTION	PSLVIA.2A PSV VIA.2A PSV VIA.2A PSV VIA.2 SV VIA.2	5 € € 7 6 0 9 0 10 11 12 € 13 €				
	SAS SCIRIBAER	PROTECTION LEVEL PROTECTION	PSL-V201.3 SH1: 57.26 PSV-V201.3	15 0 16 - 17 - 18 - 20 - 21 - 22 - 23 -				
	CONDENSAIE MEIN SEPARAIOR	PROJECTION LEVEL PROJECTION PROJECTION PRESSURE IN NEF	PSH-V204 5	25 26 27 28 29 30 9 11 22				
Note of the second se		PROJECTION LEVEL PROJECTION	PSH-V210.2 PSV-V20.1 PSV-V20.2 SSV-V210	34 35 36 37 38 37 39 4 39 4 40 4				• • 14 • 13 • 13
		PROJECTION LEVEL PROFECTION	PSV-V211.1					
C: 2: P: C:		TEMPERATURE PROTECTION PRESSURE PROTECTION	LSH91-V2114	50 51 52 53 53 54				
	CONDENSATE METH. SEMINANOR	LEVEL MORECTION PRESSURE PROVECTION	PSV-V2132 FSV-3 PCS 	56 57 58 59 50 61 62 63 64				
	HETH, WHER FLASH DRUM	LEVEL PROJECTION	F5V	56		┥╴╴		65 67 68 68 70
97720 97720 97	CP2258 NH PLNP C17 86F 17P CV 8 HEIHANDLAIED HALER STORAGE	PROTECTION PRESSURE PROTECTION PRESS_PROSECT PRESSURE PROTECTION	FSV	72 73 73 74 75 75 76 77 77 74 79 74				● 72 73 • 73 • 73 • 73 • 73 • 75 • 75 • 76 77 • 77 • 77 • 75 • 76 • 77 • 77 • 75 • 76 • 77 • 77 • 77 • 77 • 77 • 77 • 77
CYAL ALLAND FS .	CP 222A MW INJ PUMP CP 2228 MW INJ PUMP CP220A REG PUMP CP220B IEG PUMP		SH7.21/28 FSV FSV PSL-P220A-1 SH7.21/28 FSV	81 82 83 84 85 84 85 84 85 84 87 84				• •
He int Law PROSERVE PROTECTION PSV/21A (PSV/21A) OD	CVITA GLYCOL SURGE TANK CVITB GLYCOL SURGE TANK CVITC GLYCOL SURGE TANK	LEVEL PROIECTION LEVEL PROIECTION LEVEL PROIECTION LEVEL	F5v I LSL v17a-1A I LSH-V17a-3 I LSL-v17a-1A I LSH-v17a-3 I LSH-v17a-1 I LSH-v23-1 SHT.16 / 28	90 91 92 93 93 94 95 95 96 97 94				91 92 92 93 93 93 94 95 95 95 96 97 97
Fight P24 Ode O	мезн танк Ср 12 а/в мецкаюц	PROTECTION PRESSURE PROTECTION	PSV-V231A PSV-V231B PSV-V233 PSV-V233 PSV-P124 PSV-P124 PSV-P124 PSV-P125 SVC PSVC PSV-P125 SVC PSVC	100 101 102 102 103 104 104 105 106 106 107				● 100 101 102 102 103 103 103 103 103 103 103 103 103 104 104 104 105 102 103 103 103 103 103 103 103 104 103 103 103 104 103 103 104 103 103 104 103 103 104 103 103 104 103 103 104 103 103 104 103 103 104 103 103 103 104 103 103 103 103 103 104 103 103 103 103 103 103 104 103 103 103 103 103 104 103 103 104 103 103 104 103 103 104 103 103 104 103 104 103 104 103 104 103 104 103 104 103 103 104 103 104 103 104 103 104 104 103 104 103 104 104 104 104 104 104 103 104 104 104 105 104 105 105 105 105 105 105 105 105 105 105
SCRUBBER PRESS PROTECT PSN V2262 115 Public Rull DN 151 LEVEL SD 1K 116 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	METH WATER DRAIN LANK CP 224 DR PP CH 226 LL	LEVEL PROJECTION PRESS PROJECT. LEVEL	PSy: P12 4 (Se-V2221) SH1 23/26 (SH-V222 2 (SH-V2223 - FS v SH1 & /20 (SH-V223 - (SE-V226 3 SH1 N/20	108 109 140 111 112 113 113 114 115 115 115 115 115 115 115				• • • • • • • • • • • • • • • • • • •
ESD SIGNALS SIGNAL FROM HEF IZ IZ </th <th>SCRUBBER PUSH BUITON</th> <th>PRESS PROTECT 151 LEVEL SD 2ND LEVEL SD 3ND LEVEL SD 41N LEVEL SD 41N LEVEL SD 41N LEVEL SD FIRE SETECTOR FIRE DETECTOR</th> <th>PSH-9262 1PC 2PCS 2PCS 3PCS 3PCS 3PCS 5PCS 5PCS 5PCS 5PCS 6PCS 004 5D 5PCS 5PCS 5PCS 5PCS 5PCS 5PCS 5PCS 5PC 5PC 5PC 5PC 5PC 5PC 5PC 5PC</th> <th>115 116 117 117 117 117 117 117 117</th> <th></th> <th></th> <th>╁╌╽╌┠╌╂╌┦╱┣╌┥╴१╼┼╌╉╌╂╼┧╌╏╼┝╌╽╶┾╌╽</th> <th></th>	SCRUBBER PUSH BUITON	PRESS PROTECT 151 LEVEL SD 2ND LEVEL SD 3ND LEVEL SD 41N LEVEL SD 41N LEVEL SD 41N LEVEL SD FIRE SETECTOR FIRE DETECTOR	PSH-9262 1PC 2PCS 2PCS 3PCS 3PCS 3PCS 5PCS 5PCS 5PCS 5PCS 6PCS 004 5D 5PCS 5PCS 5PCS 5PCS 5PCS 5PCS 5PCS 5PC 5PC 5PC 5PC 5PC 5PC 5PC 5PC	115 116 117 117 117 117 117 117 117			╁╌╽╌┠╌╂╌┦╱┣╌┥╴१╼┼╌╉╌╂╼┧╌╏╼┝╌╽╶┾╌╽	
	ESO SIGNALS MICIN QIHER	SO SIGNAL SO SIGNAL	FROM ODIN	125				• 126 • 126 • 128 • 128

APPENDIX 6

FUNCTIONAL DESCRIPTION OF THE ESD SYSTEM

S-FF 88 16 9520

		,					
2	26.11.81 UPDATE	ED PAGE 4.	5 AND 6	····	JKa	Art	
1			IG TO EAN CO	MMENTS	JKa	4म	1
0	12.6.81 First lasus				JKa	87	
REV	DATE DESCRIPTION	1			BY	APP.	CLIENT
			NO.: EXTE			2	· · · · · · · · · · · · · · · · · · ·
		elf aquit	aine norge	2/S P.O. Box 1	68 — 40	D1 Stava	anger
		A4	Installation TCP 2	System HYDR. AN	ND SH	UT D	OWN
	elf	Job no. F 087 Scale	FUNCTIO OF THE	NAL DESCRI ESD SYSTEM	IPTIO 1		
F	RIGG FIELD	Drwg. no. S-FF	38_16	9520	8 	She	* /6

بر فري 1/6

TABLE OF CONTENTS

		FAGE
1.0	GENERAL	3/6
2.0	SYSTEM DESCRIPTION	4/6
3.0	REFERENCE LIST, DRAWINGS AND SPECIFICATION	6/6

C

2/6

1.0 GENERAL

(

The emergency shut down system (ESD) for TCP 2 extension is fully integrated in the existing ESD system for the TCP 2 platform and based on the same philosophy.

The intention with the ESD system is to avoid dangerous situations or limit the consequences of same, to avoid disturbances in parts of the process or damage on process equipment.

The system is split into five levels, and the consequences of the action on each level is described in section 2.0.

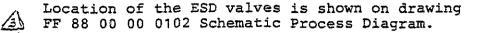
The system can be released either manually by push buttons or automatically by fire/gas detection or process fault depending upon which level it is released. The ESD valves can only be opened again when the reason for ESD action is eliminated and authorization signal is given from control center.

Time response for the system will be within 45 seconds i.e. the time from the signal is initiated by the sensor till the ESD valve is fully closed shall not exceed 45 seconds.

Three auxiliary systems are utilized to operate the ESD system. These are as follows:

- A. Hydraulic Power System See Hydraulic System Description Appendix B.
- B. Instrument Air See drawing FF 87 00 00 1003 - Plant and Instrument Air System on TCP 2

Instrument air at 1.4 bar, 2.5 bar and 7 bar, is supplied from the existing Instrument Air System and is provided with back-up air bottles in order to provide safe operation in case of failure in air supply.


C. Electric power is fed from the existing No Break System which has a battery back-up.

Voltages:	220	V	AC
-	110	V	DC
	48	V	DC
	24	V	DC

See drawing FF 85 23 03 00 84.

sofresid norge a.s

2.0 SYSTEM DESCRIPTION

The ESD logic for the field is shown on drawing FE 00 16 00 5801 Frigg Field Shut Down General Logic Diagram. Drawing FF 88 16 08 9551 Shut Down Detail Logic Diagram presents the ESD logic for TCP 2 treatment extension which is incorporated in the total system. 4th and 5th level is defined as process safety system, see S-FF 88 16 08 9521 Description of Process Safety System.

1st level: ∕3∖

...C

6721

1st level shut down can only be released manually by using the push button in QP Central Control Room (CCR). The action is shut down of all field included isolation of the platforms by closing ESD valves on bridge lines. It also includes Disaster Shut Down signal (DSD) on DP 2 and CDP 1. There is no cascade action to level 2 and hence no decompression. 5.5 kV generators TA 4, 5 and 6 will be shut down. Non essential electrical consumers is isolated and fire water pumps CP6A and CP6B will start.

2nd level: A

2nd level shut down of TCP 2 treatment is also only manually released by push buttons located in QP CCR and TCP 2 Interface Room. The action is the same as for 1st level with following exceptions:

5.5 kV generators are not affected. ESD signal only to DP 2. Decompression of bridge and treatment lines.

3rd level: ∕3∖

3rd level shut down can be released either manually by push buttons or automatically by fire or gas detection. 7 push buttons are located on different places for manual release (See drawing FF 88 16 08 9551 Shut Down Detail Logic Diagram). Note that 4 of these push buttons also will cause 3rd level shut down both on treatment and compression part of TCP 2. Action on 3rd level is as for 2nd level with following exceptions:

No ESD signal to DP 2. Automatic release of Deluge Valves for relevant fire/gas affected area in parallel with 3rd level shut down. Note that Deluge Valves will not be released by operating of push buttons.

4th and 5th level:

3

(

(

4th and 5th level shut down are defined as process safety system. Release on 4th level is both manually and automatically, whilst 5th level is only automatically released by process faults. The ESD valves are grouped together in three groups. Group "O" is ODIN stream isolation, group "N" is NEF stream isolation and group "U" is closing of sealines. Group "U" will only be closed by 3rd level shut down or higher levels, whilst group "O" and "N" will also be closed by 4th level shut down. 5th level is only selective i.e. a process fault will only close one or a certain number of ESD valves. For further information about 4th and 5th level shut down, see FF 88 16 08 9521 Description of Process Safety System.

3.0	REFERENCE LIST, DRAWINGS	S AND SPECIFICATIONS
. ·]	FF 88 00 00 0102	Schematic Process Diagram
1	FE 88 16 00 5801	Frigg Field Shut Down General Logic Diagram
[FF 88 16 08 9155	Shut Down & Safety Functions TCP2 Extension Overall Block Diagram
1	FF 88 16 06 9152	Fire Detection Logic Principal Diagram
:	FF 88 16 06 9153	Gas Detection Logic Principal Diagram
:	FF 88 16 06 9151	Public Address and Alarm System Block Diagram
:	FF 88 16 08 9551	Shut Down Detail Logic Diagram
:	FF 88 16 08 9561	ESD Pneumatic Schmatics Group "O".
	FF 88 16 08 9562	ESD Pneumatic Schematics Group "U".
:	FF 88 16 08 9564	Pneumatic Schematics Group "N".
	ELD 2169 Sheet 7379	Safety Plot Plan Main Deck
:	FF 88 00 00 4012	Safety Plot Plan M50 Main Deck
	FF 88 16 08 1832	Type A Pneumatic ESDV Control Schematic
	FF 88 16 08 1833	Type B Hydraulic ESDV Control Schematic
	FF 88 16 08 1835	Type D Pneumatic ESDV Control Schematic
	S-FF 88 20 2600	Specification for ESD Valves
	S-FF 88 16 2940	Specification for Hydraulic & Pneumatic Control Enclosures
	S-FF 88 16 1512	Specification for Level Switches
	S-FF 88 16 3110	Specification for Pressure Switches
	S-FF 88 16 4002	Specification fo Temperature Switches
	Appendix B	Hydraulic System Description
	FF 85 23 03 00045	Master One Line Diagram for Emergency Supplies
•	FF 87 00 00 1003	Plant and Instrument Air System on TCP 2
	FF 87 23 03 8800	Low Voltage Consumers for 380 V MCC "A"
	FF 87 23 03 8810	Low Voltage Consumers for 380 V MCC "B"

· · (

.

(

6/6

sofresid norge a.s

APPENDIX B

C

DESCRIPTION OF HYDRAULIC SYSTEM

sofresid norge a.s -

APPENDIX B

HYDRAULIC SYSTEM DESCRIPTION

HYDRAULIC POWER GENERATION

Hydraulic power for Module M50 and ESDV's on sealines will be derived from the existing treatment hydraulic power generator by extending the existing ring main shown schematically on drawing no. FF 88 00 0800 02.

The existing system has the following capacity:

Max.	Press	138	Bar
Min.	Press	125	Bar
Pumpi	ing Rate	100	l/min.

It is estimated that with the present load its recovery time is approximately 7 minutes if the full ESDV back up is utilized.

The additional load imposed by the extension amounts to approximate 100 litres if the full ESDV back up is used.

Therefore the new recovery time will be approximately 9 minutes.

The hydraulic system for M50 will consist of a ring main with dedicated local accumulator stations for each ESDV valve.

Each ESDV will be controlled by means of a local control enclosure. This will provide either a local or remote facility to close the valve, with the local control having priority. Opening of the valve is accomplished locally, but requires that an ESDV status does not exist, that there is no remote close requirement and that authorization has been given to open the valve. Pneumatic valves in Pancake 53 operate in a similar manner. The control enclosure schematics are shown on drawings no.:

FF 88 16 00 1832 - Type A Pneumatic ESDV Control Schematic (DD 08 P53 06807)

FF 88 16 08 1833 - Type B Hydraulic ESDV Control Schematic (DD 08 M50 06808)

FF 88 16 08 1834 - Type C Hydraulic IIV Control Schematic (DD 08 M50 06809)

FF 88 16 08 1835 - Type D Pneumatic ESDV Control Schematic (DD 08 M50 06810)

For hydraulic valves these schematics are identical to those on the existing treatment unit.

Actuators are of the double acting hydraulic type except for those valves located in the Pancake 53 which are of the double acting pneumatic type. The blow down valves are conventional fail open control valves fitted with travel stops to limit the flow through the valve.

Provision is made to supply all ESDV values except blow down values with either a hydraulic or pneumatic back up accumulator/volume tank capable of providing 2 cyclic (4 single strokes) operations of the value.

APPENDIX 7

DESCRIPTION OF PROCESS SAFETY SYSTEM

S-FF 88 16 08 9521

1	20.10	81 IIndata	d 200 +	O FAN COM	ante	117-	FEL	
00	13.10.81	First Issue		O EAN COMM		JKa	22	
REY.	DATE	DESCRIPTION				BY	APP.	CLIENT
sofresid norge a.s NO.: SP 08 000 6801								
		T(· ·	EXTE			01 Stav	suğer
			A4	Installation TCP 2	Symem HYDR. &	SHUI	DOW	7N
	e	IF	Job mo. F 087 Scale		PTION OF P SYSTEM	ROCE	SS	
F	RIGO	FIELD	Drws no. S-FF	88 16 08	9521	8 01	Sh 1	•••• /~

.

1 / F

TABLE OF CONTENT

1.0	GENERAL	3/8
2.0	PROCESS SAFETY CONTROL LOOPS, GENERAL	4/8
3.0	PROCESS SAFETY CONTROL LOOPS, PNEUMATIC	5/8
4.0	PROCESS SAFETY CONTROL LOOPS, ELECTRICAL	6/8
5.0	REFERENCE LIST, DRAWINGS AND SPECIFICATIONS	7/8 - 8/8

278

PAGE

1.0 GENERAL

The Process Safety System is an integrated part of the total ESD System, which is split in five levels. Ref. FF 88 16 08 9520 - Functional description of the ESD System. The Process Safety System is formed by 5th and 4th level in the ESD System. The intention with the Process Safety System is to close either one or a certain number of ESD valves in the process when abnormal conditions occur, in order to avoid dangerous situations, disturbances in other parts of the process or damage on process equipment. Thus, a process safety function is to be defined as closing of an ESD valve/valves or a pump to be switched off.

All process safety functions on 5th level are initiated automatically by sensors located in different places in the process. 4th level signals are initiated either automatically by sensors or manually by push buttons. The push buttons are located in QP central control room, interface room on TCP 2 and locally in the field. (See drawing ELN 2169 sheet C7379 - Safety Plot Plan Main Deck FF 88 00 00 4012 - Safety Plot Plan M50 Main Deck.). Note that signals from 4th level will close the whole stream on either NEF or ODIN.

Three auxiliary systems are utilized to operate the ESD and Process Safety System. These are as follows:

- A. Hydraulic Power System See Hydraulic System Description Appendix I.
- B. Instrument Air See drawing FF 87 00 00 1003 - Plant and Instrument Air System on TCP 2

Instrument air at 1.4 bar, 2.5 bar & 7 bar, is supplied from the existing Instrument Air System and is provided with back-up air bottles in order to provide safe operation in case of failure in air supply.

C. Electric power is fed from the existing No Break System which as a battery back-up.

Voltages:	220	V	AC
	110	v	DC
	48	V	DC
	24	V	DC

See drawing FF 85 23 03 0045.

Time response for the system will be within 45 seconds i.e. the time from the signal is initiated by the sensor till the ESD valve is fully closed shall not exceed 45 seconds.

2.C PROCESS SAFETY CONTROL LOOPS, GENERAL

A process safety control loop consists of following components:

A. Sensors monitoring the process condition, i.e. pressure, temperature and liquid level in the different vessels. These are all switches with air supply and pneumatic on/off output signal.

- B. Auxiliary Components
 - B.1 Pneumatic/electric switches located in pneumatic switch cabinet in interface room.
 - B.2 Relays and solenoid valves located in ESD cabinet in interface room.
 - B.3 Pneumatic operated pilot valves located close to the different control enclosures and ESD valves.
 - B.4 Pneumatic/hydraulic control enclosures located close to the ESD valve.
- C. ESD valve with built on pneumatic or hydraulic actuator depending on valve size and torque.
- D. Alarm circuit with visual and audible signal in QP control room.

3.0 PROCESS SAFETY CONTROL LOOPS, PNEUMATIC

Closing of ESD Valves

Ref. drwg.'s no.:

FF 88 16 08 9561 Pneumatic Schematic Group "O"

FF 88 16 08 9562 Pneumatic Schematic Group "U"

FF 88 16 08 9564 Pneumatic Schematic Group "N"

On 5th and 4th level the ESD valves are closed almost directly when the output signal from the sensor in the process is removed.

Example: High liquid level in CV1A. See drawing FF 88 16 08 9561 - Pneumatic Schematics Group "0".

When in normal condition there is a continuous control signal from LSHH V1A.8A to pilot valve LV V1A.8A which keeps this open between inlet and outlet and allows for the air supply to the control enclosure and ESDV V1A.1 is in open position. If the level in CV1A rizes and pass the set point for LSHH V1A.8A the control signal to LV V1A.8A is vented and this will switch over to vent position. Air supply to the control enclosure is vented and ESDV V1A.1 will close. For functioning of pneumatic/ hydraulic control enclosures see following drawings:

FF 88 16 00 1832 - Type A Pneumatic ESDV Control Schematic FF 88 16 08 1833 - Type B Hydraulic ESDV Control Schematic FF 88 16 08 1835 - Type D Pneumatic ESDV Control Schematic

All types of control enclosures are equipped with devices for local closing of the valve and also devices for testing of ESD valve functioning.

The alarm circuit will be activated by a pneumatic/electric switch in interface room from where the signal is passed via telemetry to alarm circuit in control room on QP. The input signal to the pneumatic/electric switch in interface room comes from the same sensor as closes the ESD valve. The ESD valve status is also shown on a mimic panel in control room and the input signal for this is provided from two limit switches mounted on the ESD valve.

When automatically closed, valves will remain closed even if the relevant cause of shut-down has disappeared. The operator will have to restart the process manually after investigation and elimination of the prime cause and after authorization signal is given for central control room.

5/8

4.0 PROCESS SAFETY CONTROL LOOPS, ELECTRICAL

Stop of Pumps

All control loops for stop of pumps are electrical except the primary signal from the sensor in the process which is pneumatic. This signal is transferred to an electric signal in the pneumatic switch cabinet in interface room and passed from there to the ESD cabinet where it operates a relay. A contact set on the relay is connected to the pump motor starter circuit and will switch off the power to this.

Ref. drwg.'s:

FF 87 23 03 8800 - Low Voltage Consumers for 380 V MCC "A"

FF 87 23 03 8810 - Low Voltage Consumers for 380 V MCC "B"

5.0 REFERENCE LIST, DRAWINGS AND SPECIFICATIONS

All drawings above are relevant P & ID's to this description.

FF 88 16 00 4143

FF 88 16 08 9551 FF 88 16 08 9561

FF 88 16 08 9562

FF 88 16 08 9564

ELN 2169 Sheet 7379

FF 88 00 00 4012

FF 88 16 08 1832

FF 88 16 08 1833

FF 88 16 08 1835 S-FF 88 20 2600 S-FF 88 16 2940 ODIN Gas Treatment

NORTH EAST FRIGG Gas Treatment

NEF and ODIN Liquid Treatment Condensate Separation

NEF and ODIN Liquid Treatment Methanolated Water

NEF and ODIN Liquid Treatment TEG & MW Facilities

NEF and ODIN Treatment Methanol Injections

NEF and ODIN Treatment Flare System

NEF and ODIN Treatment Process Drainage System

NEF and ODIN Liquid Treatment Methanolated Water Injection on DP 2

TCP 2 Extension Safety Analysis Function Evaluation Chart (SAFE)

Shut Down Detail Logic Diagram

ESD Pneumatic Schematics Group "O"

ESD Pneumatic Schematics Group "U"

Encumatic Schematics Group "N"

Safety Plot Plan Main Deck

Safety Plot Plan M50 Main Deck Location of ESD push buttons level 4

Type A Pneumatic ESDV Control Schematic

Type B Hydraulic ESDV Control Schematic

Type D Pneumatic ESDV Control Schematic

Specification for ESD Valves

Specification for Hydraulic & Pneumatic Control Enclosures

sofresid norge a.s

S-FF	88 1	6 1	512
S-FF	88 1	63	110
S-FF	88 1	64	002
Appen	dix	I	
FF 85	5 23	03-	00045
FF 87	00	00	1003
FF 87	7 23	03	8800
FF 87	23	03	8810

Specification for Level Switches

Specification for Pressure Switches

Specification for Temperature Switches

Hydraulic System Description

Master One Line Diagram For Emergency Supplies

Plant And Instrument Air System On TCP 2

Low Voltage Consumers For 380 V MCC "A"

Low Voltage Consumers For 380 V MCC "B"

APPENDIX B

DESCRIPTION OF HYDRAULIC SYSTEM

APPENDIX B

HYDRAULIC SYSTEM DESCRIPTION

HYDRAULIC POWER GENERATION

Hydraulic power for Module M50 and ESDV's on sealines will be derived from the existing treatment hydraulic power generator by extending the existing ring main shown schematically on drawing no. FF 88 00 0800 02.

The existing system has the following capacity:

Max.	Press	138	Bar
Min.	Press	125	Bar
Pumpi	ng Rate	100	l/min.

It is estimated that with the present load its recovery time is approximately 7 minutes if the full ESDV back up is utilized.

The additional load imposed by the extension amounts to approximate 100 litres if the full ESDV back up is used.

Therefore the new recovery time will be approximately 9 minutes.

The hydraulic system for M50 will consist of a ring main with dedicated local accumulator stations for each ESDV valve.

Each ESDV will be controlled by means of a local control enclosure. This will provide either a local or remote facility to close the valve, with the local control having priority. Opening of the valve is accomplished locally, but requires that an ESDV status does not exist, that there is no remote close requirement and that authorization has been given to open the valve. Pneumatic valves in Pancake 53 operate in a similar manner. The control enclosure schematics are shown on drawings no.:

FF 88 16 00 1832 - Type A Pneumatic ESDV Control Schematic (DD 08 P53 06807)

FF 88 16 08 1833 - Type B Hydraulic ESDV Control Schematic (DD 08 M50 06808)

FF 88 16 08 1834 - Type C Hydraulic IIV Control Schematic (DD 08 M50 06809)

FF 88 16 08 1835 - Type D Pneumatic ESDV Control Schematic (DD 08 M50 06810)

For hydraulic valves these schematics are identical to those on the existing treatment unit.

Actuators are of the double acting hydraulic type except for those valves located in the Pancake 53 which are of the double acting pneumatic type. The blow down valves are conventional fail open control valves fitted with travel stops to limit the flow through the valve.

Provision is made to supply all ESDV values except blow down values with either a hydraulic or pneumatic back up accumulator/volume tank capable of providing 2 cyclic (4 single strokes) operations of the value.

APPENDIX 8

PRESSURE DROP CALCULATIONS FOR LP VENT SYSTEM

CLIENT:	E.A.N.	PROJECT: TCP-2 Extension	SHEET 1 OF 2
DISCIPLINE:	Process	ENGINEER: JIN REF	• •
SUBJECT:	LP vent header	pressure drop calculation	

CALCULATION NOTES

The below calculations are based on maximum flow rate released through the LP vent system. This flow rate corresponds to fire on the pancake, which will release 0.348 MSCM/D or 10608 kg/hr.

The pressure drop is calculated using the Darcy formula:

 $(\Delta P_{100}^{1}) = \frac{4f \times 0.000336 \times W^{2}}{(ID)^{5} \times \rho}$

wh

nere	(P ₁₀₀)	=	the pressure drop in psi/100 ft
	f	=	fanning friction factor
	W	=	flow rate in lb/hr (23387 lb/hr)
	ID	=	internal diameter of pipe in inches (10.02)
	P	=	gas density in lb/cuft

The friction factor "f" is determined from Reynolds number:

$$Re = \frac{6.32 \times W}{M d}$$

gas viscosity in cp (0.011) where

$$Re = \frac{6.32 \times 23387}{0.011 \times 10.02} = 1341007$$

Since Re > 4000, f = $\frac{0.04}{\text{Re}^{0.172}}$ = 0.00353

		·		CALCU	LATION NOT	TES
			•	' <u>-</u>		
CLIENT:	E.A.N.	PROJECT:	TCP-2 E	xtension	SHEET	2 OF 2
DISCIPLINE:	Process	ENGINEER:	JIN	REF.:		
SUBJECT:	LP vent head	er pressure di	rop calc	ulation		
Gas	density @ 1.	5 bara : p	= 1.5	5 x 17.3 5 x 0.08314	= 1.065	kg/m ²
Pre	ssure drop				(0.066	5 lb/cuf
-		$.00353 \times 0.003$	0336 x ((23387) ² -	0.386 ps:	1/100 ft
Equ	ivalent lengt 75 m		=	246 ft		
		lbows largement 10"	= /14" _ =	72 ft 7 ft 325 ft		
Tot	al pressure d	rop: 0.386 x	3.25 =	= 1.25 psi	= 0.1 ba	ar
and (Re	the existing f. is made to	in point betw 14" header i Document 553 first part).	s 1.3 ba 2 N12 "1	ara.		_
		ssure for the		vent header	will be :	1.4 bara

APPENDIX 9

BACK PRESSURE CALCULATIONS - LT RELIEF SYSTEM

-

- HP RELIEF SYSTEM

CALCULATION NOTES

CLIENT: E.A.N.	PROJECT: TCP-2 Extension	n SHEET 1 OF 9
DISCIPLINE: Process	ENGINEER: JIN	REF.: JIN/asb
SUBJECT: Back pressure calcs	- LT Relief header	

Basis

The method for calculating the back pressure is based on the guidelines given in API RP 521 section 5.3A.1. The critical mass flow is determined using the equation:

Gci = 12.6 P₀
$$\left(\frac{M}{T_0}\right)^{0,5}$$

Gci = critical mass flow, lb/sec, sqft
P_o = upstream pressure, psia
M = molecular weight of vapour (16.9)
T_o = upstream temperature, ^OR (393^OR or - 55^OC)

Total line resistance is calculated using the equation:

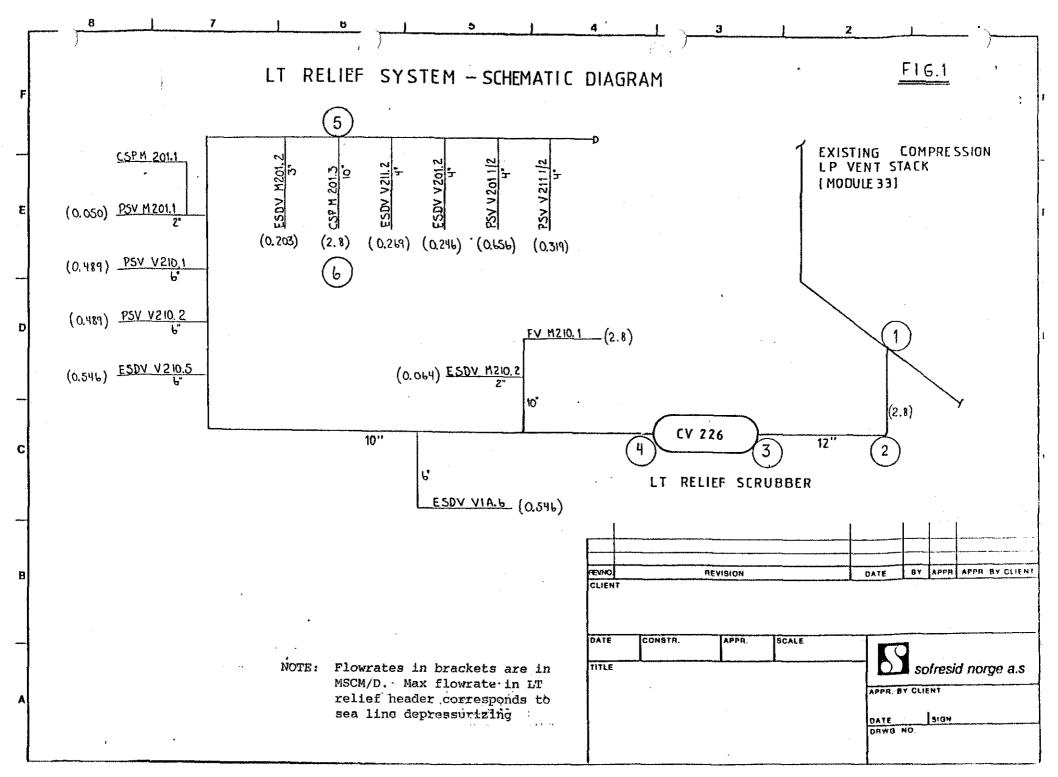
$$N_{T} = \frac{4fL}{D} + B$$

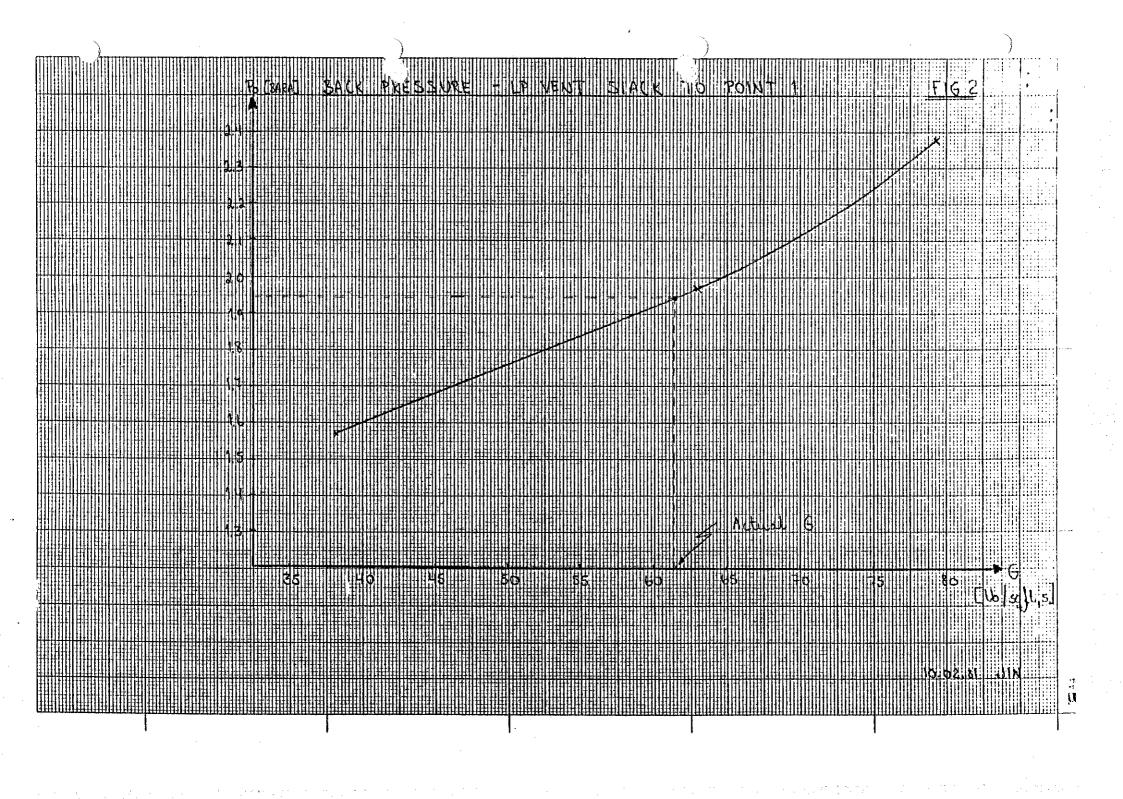
N_T = total equivalent resistance factor, dimensionless
f = fanning friction factor
L = equivalent length of line, ft
K = values for pipe fittings, dimensionless

i) LT RELIEF SYSTEM

1. <u>Back pressure from 1 to 2.</u> (Ref. is made to fig. 1) <u>Calculation of friction factor f.</u>

Reynolds no: Re = $\frac{9 \text{ VD}}{M}$ g '(at 2.0 bara and - 55°C): $\frac{16.9 \times 2.0}{0.08314.218}$ = 1.86 kg/m³ D (internal diameter) = 0.315 m Flowrate (2.8 MSCM/D) = 83380 kg/hr

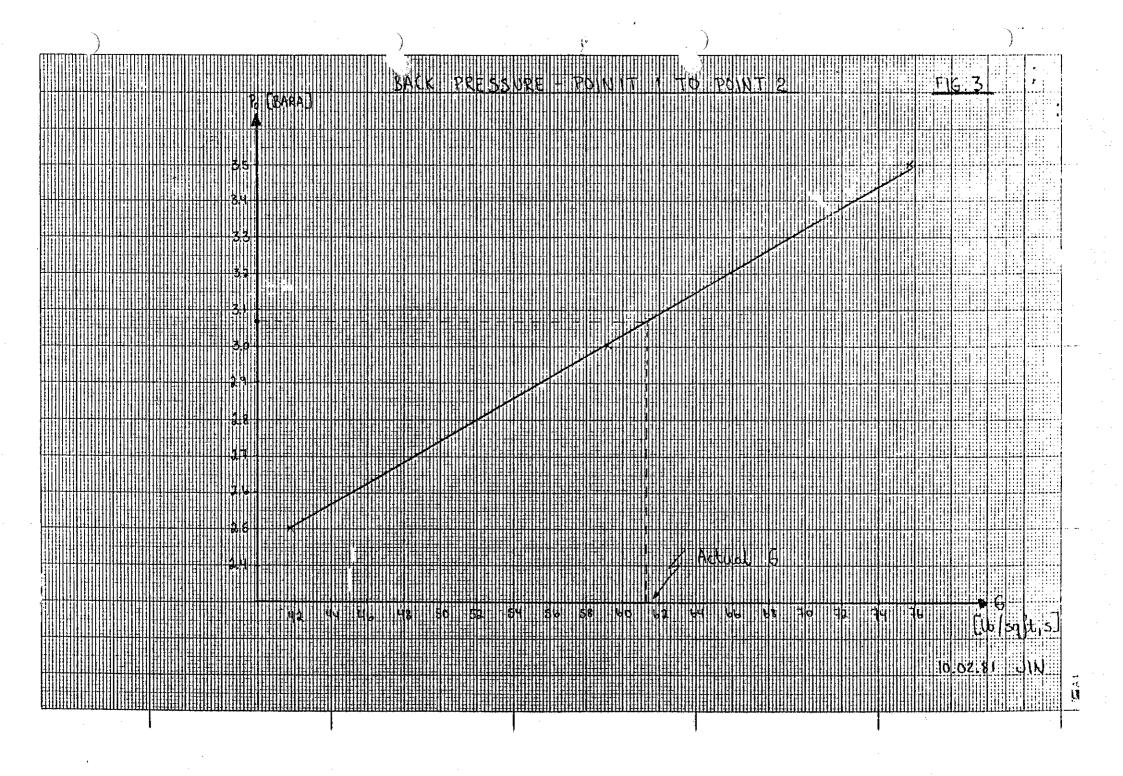

CALCULATION NOTES


CLIENT: E.A.N.	PROJECT:	TCP-2	Exte	ension	SHEET	2	OF 9
DISCIPLINE: Process	ENGINEER:	JIN		REF.:	JIN/asb		
SUBJECT: Back pressure of	alculation -	LT re	lief	header			
•				·			
8338	10						
$V = \frac{8338}{1.86 \times 3600}$	$\frac{1}{1} \times 0.073 = 13$	71 m/s		•			
M = 0.0083	from about 1	c _``>c	ນຕອ	27)			
1 0.0003	TIOM CHAIL H	0 - 20	NGP	54)			
$Re = \frac{1.86 \times 171}{0.0083 \times 10^{-10}}$	$\frac{x \ 0.315}{x \ 0.315} = 1$	207095	2				
0.0083 x	: 0.001	201099	-				
Since Re > 4000	$f = \frac{0.04}{0.17}$	$\frac{1}{2} = 0.0$	0024				
	Re	6					
•							
Calculation of	NT						
Length: 11.5 m	= 38 ft						
. 4 x 0.0024	x 38						
$N_{\rm T} = \frac{4 \times 0.0024}{1.03}$	= 0.4			•			
Back pressure o							
DUCK PLESSULE C							

Results

Downstream pressure (P ₁) 1.373 bara	TRIAL 1	TRIAL 2	TRIAL 3
Upstream pressure P _o	1.573	1.973	2.373
P ₁ /P ₀	0.87	0.696	0.58
G/Gci	0.64	0.84	0.875
Gci lb/sec, sqft	59.61	74.77	89.93
G 、lb/sec, sqft	38.15	62.8	79.14
		<u> </u>	<u> </u>

					TION NOTE	Ĭ
CLIENT: H	5.A.N.	PROJ	ECT: TCP-2 Ex	tension	SHEET 3	OF
DISCIPLINE	: Process	ENGI	NEER: JIN	REF.:	JIN/asb	
SUBJECT:	Back pressur	e calculati	ion - LT reli	ef system		
	"Actual" G j	.s (12" pipe	≥):			
	<u>833</u> 360	$\frac{380 \times 2.2046}{1.0} \times \frac{\pi}{4}$	$\frac{52}{(3)^2} = 61.3 1$	b / sqft,s		
۵	The above re	sults are p	presented in	fig. 2.		
	Conclusion:	The pressu	ire at point	1 is 1.95 ba:	ra	
				•		
				. •		
					· ·	
	ι,					


CLIENT: E.A.N. PROJECT: TCP-2 DISCIPLINE: Process ENGINEER: JIN SUBJECT: Back pressure calcs - LT relief 2. Back pressure from 2 to 3 (Ref. Calculation of N_{T} Length 38.1 m 5 long rad 90° ell (K = 0.45 x 5	REF.: JIN/asb header
DISCIPLINE: Process ENGINEER: JIN SUBJECT: Back pressure calcs - LT relief 2. Back pressure from 2 to 3 (Ref. Calculation of N _T Length 38.1 m	REF.: JIN/asb header
SUBJECT: Back pressure calcs - LT relief 2. <u>Back pressure from 2 to 3</u> (Ref. <u>Calculation of N</u> Length 38.1 m	header
2. <u>Back pressure from 2 to 3</u> (Ref. <u>Calculation of N_m</u> Length 38.1 m	
Calculation of N _T Length 38.1 m	fig. 1)
Calculation of N _T Length 38.1 m	fig. 1)
Calculation of N _T Length 38.1 m	fig. 1)
Calculation of N _T Length 38.1 m	fig. 1)
Length 38.1 m	
-	
-	
5 long rad 90° ell (K = 0.45 v f	= 125 ft
5 10Hg 144 50 EII (K = 0.45 K 5) = 2.25
3 long rad 45° ell (K = 0.20 x 3) = 0.60
$N_{T} = \frac{4 \times 0.0024 \times 125}{1.07} + 2.25 + 0$.60 = 4.05
T 1.03	
٠	
Back pressure calcs	

Results

÷

Downstream pressure (P ₁) 1.95 bara	TRIAL 1	TRIAL 2	TRIAL 3
Upstream ~pressure P	2.5	. 3.0	3.5
P ₁ /P _o	0.78	0.65	0.56
G/Gci	0.44	0.52	0.57
Gci lb/sec, sqft	94.75	113.7	132.64
G lb/sec, sqft	41.69	59.12	75.60

The above results are presented in fig. 3. <u>Conclusion</u>: The pressure at point 2 is <u>3.07 bara</u>

$$\underline{CALCULATION NOTES}$$
CLIENT: E.A.N. PROJECT: TCP-2 Extension SHEP 5 OF 9
DISCIPLINE: Process ENGINEER: JIN REF.: JIN/asb
SUBJECT: Dack pressure calcs - LT relief header
3. Pressure drop through LT - relief scrubber
Pressure drop is calculated using the formula
$$\delta p = \frac{K_0 V^2}{9266}$$
Sudder enlargement K₁ = (1 - β_1^{-2})²
Sudder contraction K₂ = 0.5 (1 - β_2)²

$$\beta_1 = \frac{\text{small diameter}}{1 \text{ large diameter}} = \frac{0.305}{1.5} = 0.20$$

$$\beta_2 = \frac{0.254}{1.5} = 0.922, \text{ K}_2 = 0.5 (1 - 0.17^2) = 0.485$$
K = 1.407
$$g (\text{at } 3.1 \text{ bara}) = \frac{16.9 \times (3.1 \times 14.5038)}{10.73 \times 393} = 0.180 \text{ lb/cuft}$$

$$v = \frac{61.31b/sqft.s}{0.180 \text{ lb/cuft}} = 340.2 \text{ fps}$$

$$\Delta p = \frac{1.407 \times 0.180 \times (330.2)^2}{9266} = 3.16 \text{ psi} = 0.22 \text{ bar}$$
Pressure just upstream the relief scrubber is (3.07 + 0.22) \text{bar}}
$$\frac{-3.3 \text{ bara}}{-3.3 \text{ bara}}$$

CLIENT:	E.A.N. PRO	JECT: TCP-2 E	xtension	SHEET 6 OF 9
DISCIPLIN		INEER: JIN	REF.: J	IN/asb
SUBJECT:	Back pressure calcs -	LT relief head	der	
				•
4.	Back pressure from 4 to	<u>o 5</u> (Ref. fig	. 1)	
	Calculation of N _m			
	+			
	Length 55 m		180.5 f	t
	11 long rad 90 ⁰ ell(K=			
	2 long rad 45 ⁰ ell (K	= 0.2 x 2)	K = 0.4	0
	$N_{\rm T} = \frac{4 \times 0.0024 \times 180.}{10.42/12}$	$\frac{5}{2}$ + 5.35 = <u>7.</u>	3	
	Back pressure calcs			
	Results		•	· · ·
	Downstream pressure(P1) 3.3 bara	TRIAL 1	TRIAL 2	TRIAL 3
	5.3 Deta			
	Upstream pressure P	4.4	4.9	5.4
		4.4	4.9 0.67	5.4 0.61

"Actual" G is (10" pipe)

Gci lb/sqft,s

G

lb/sqft,s

$$\frac{83380 \times 2.20462}{3600 \times \frac{\pi}{4}(\frac{10.42}{12})^2} = 86.2 \, \text{lb/sqft,s}$$

166.75

65.0[°]

185-70

78.0

204.65

90.1

The above results are presented in fig. 4. <u>Conclusion</u>: The pressure at point 5 is <u>5.23 bara</u>

PRESS POINT 5 BACK POINT - FIG 4 URE TO , ada 1 -i | 1. P. LBARAD ikn. 1. 54 - ŧ 53 52 δ.1-- 50 4.9 4,8 47. 46 45 Actual G 44 G [Ub/sql.s] 78,80 82. 84 75 172 74 86....88 90 92 VL 64 94 96 68 ٠i. 14.07.81 JIN 1 有目的

18 marchan

1. 4

			CALCULAT	ION NOTES	
CLIENT: E.A.N.	PROJECI	r: TCP-2 Ext	ension	SHEET 7 O	F 9
DISCIPLINE: Process	ENGINE	ER: JIN	REF.: J	IN/asb	
SUBJECT: Back pressure	e calcs - LT r	celief heade	er	<u> </u>	
					•
					•
5. Back pressure	e from 5 to 6	(Ref. fig.	1)		
Calculation of	of N _m				
Lenght 7.1 m		=	23 ft		
1 long rad 90	0° ell (K = 0.	.45) =	0.45		
· 1 Tee throug	h branch (K=1	.0) =	1.0		
$N_{\rm TP} = \frac{4 \times 0.00}{100}$	h branch (K=1) $\frac{024 \times 23^{-}}{12} + 1.4$	45 = 1.7			
* 10.	42/12				
Back pressure	e calcs				
Results					
				· · · · · · · · · · · · · · · · · · ·	
Downstream p	ressure (P.)				-
5.23		TRIAL 1	TRIAL 2	TRIAL 3	
			<u> </u>		
Upstream pres	ssure bara	5.4	5.5	. 5.8	l.
P ₁ /P _o		0.97	0.95	0.90	
G/Gci		0.23	0.31	0.44	

The above results are presented in fig. 5. Conclusion: The pressure at point 6 is 5.70 bara

204.65

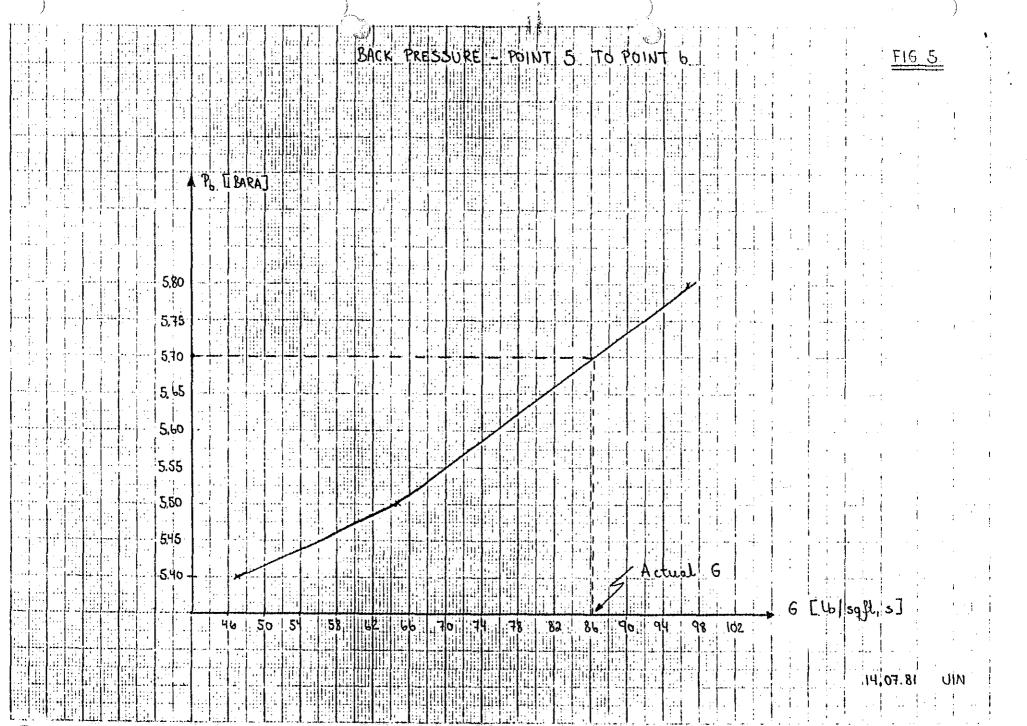
47.07

Gci lb/sqft,s

G

lb/sqft,s

Max back pressure in LT relief system is 5.7 bara

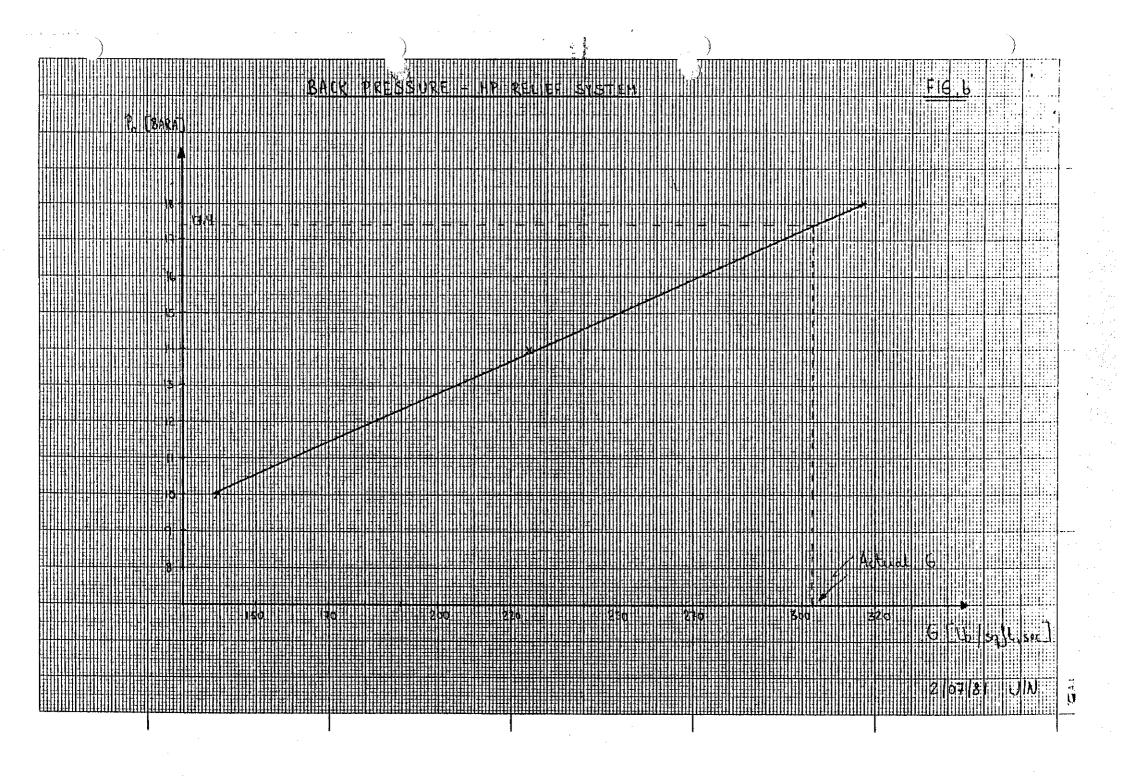

÷.,

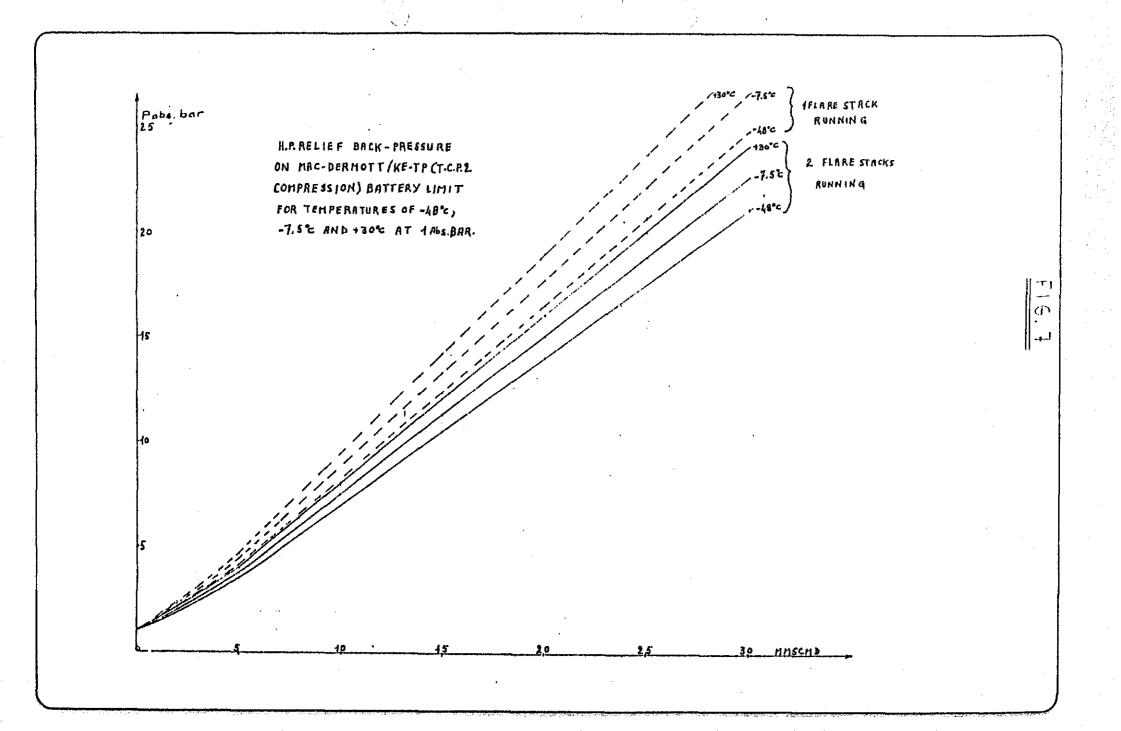
208.44

64.62

219.80

96.71


CLIENT:	E.A.N	PROJECT: TCP-2	Extension	SHEET 8	of 9
DISCIPLI	NE: Process	ENGINEER: JIN			
SUBJECT:	HP Relief	system (Bypass of cold	vent)		
ii)]	HP - RELIEF SY	STEM			
]	Piping class H	CX			
1	Pipe size 10 ["] =	=>ID = (10.75 - 2.0.56)	" = 9.63 in		
I	Flowing area:	$\frac{1}{4}$ 1D ² = 0.04699 m ² =	0.506 ft^2		
		_			
I	Back pressure	at tie in (ref. fig. 7) : 7.3 bara		
1	Flowrate 8.4 M	ISCMD = 250140 kg/hr (5	51463 lb/hr)		
			-		
I	Density: $\rho = -$	$\frac{16.9 \cdot 7.3}{0.08314 \cdot 233 \cdot 0.97}$	$= 6.6 \text{ kg/m}^3$		
. 1	Velocity v=-	250140 =	224.0 m/sec		
		6.6 3600 0.04699			
ľ	Mach no:	224 = 0.58			
		386.4			
. 1	Reynold no:	$R_e = \frac{9 \text{ VID}}{M} = \frac{6.6 \cdot 224}{0.011 \cdot 0.}$	-0.245 = 32934	4295	
	•	0.011 · 0.	001		
ŧ	E = 0.04	= 0.00203			
	Re 0.172				
<u>c</u>	Calculation of	<u> </u>			
I	Length 13m	ı	= 43.00 ft		
8	B long rad ell	$K = 8 \cdot 0.32$	= 2.56		
	1 Tee	K	= 1.72		
	l enlagement	K	= 0.41		
	1 check valve	K	= 2.3		
	1 ball valve	K	= 0.21		
		Σ 43	ft + 7.20		
	•				
r	$N_{\rm T} = \frac{4f \cdot L}{+} \sum K$	$= \frac{4 \cdot 0.00203 \cdot 43}{0.8025} + 7.2$	= 7.6	*	
	ID	0.8025			
	•				
			•		


LIENT: E.A.N	PROJECT: TCP-	-2 Extension	SHEE	et 9 Of
ISCIPLINE: Process	ENGINEER: JIN]	REF.:	
JBJECT: HP Relief system	(Bypass of c	old vent)		
$G_{ci} = 12.6 P_0 \left(\frac{M}{T_0}\right)^0$ = 12.6 $P_0 \left(\frac{16.9}{100}\right)^0$		5		
420	I			
P ₁ = 7.3 BARA	TRIAL 1	O TRIAL 2	TRIAL 3	
420	I		TRIAL 3 18	
$P_1 = 7.3 BARA$	TRIAL 1	TRIAL 2		
420 P ₁ = 7.3 BARA Upstream pressure,P ₀	TRIAL 1 10	TRIAL 2 14	18	
420 $P_1 = 7.3 \text{ BARA}$ Upstream pressure, P_0 P_1 / P_0	TRIAL 1 10 0.73	TRIAL 2 14 0.52	18 0.405	

Calculation of "actual" G:

G= 551463 3600 • 0.506 302.7 lb/sec,sqft

From attached figure, the max back pressure in the HP relief system for TCP 2 Extension is 17.4 Bara.

APPENDIX 10

CALCULATION OF TEMPERATURE DOWNSTREAM

OF THE BLOW DOWN VALVES

CLIENT: E.A.N.	PROJECT: TCP-2 Ext	ension SHEET	1 OF	1
DISCIPLINE: Process	ENGINEER: JIN	REF.: JIN/asb		
SUBJECT: Calculation of	temperature downstream	the blowdown valves	;	

Basic

The method for calculating the temperature downstream of the blowdown valves, is based on the correlations outlined in GPSA Engineering Data Book, section 17. (Page 17-6 is attached for information.)

Assumptions:

- The gas composition is identical to the ODIN gas composition.
- 2. The upstream pressure is taken at 160 bara, the downstream pressure at 2 bara.

3. The upstream temperature is $5^{\circ}C$ (41°F)

The calculation results are given below.

<u>Conclusion</u>: Temperature downstream of the blowdown valves is estimated to be around - 75^oC. (Based on extrapolation between the values given below). chart. The pure component critical temperatures (T.), critical pressures (P.) and acentric factors (c) are given in the table of physical constants, Section 16, Physical Properties

The reduced temperature and pressure are defined as $T_r = T_T T_r$, and $P_r = P/P_r$, where absolute temperatures and pressures are used. The units of (H'' - H)will depend on the units of R, the universal gas constant, and T_r. For (H'' - H) values of Btu /lb mole, R = 1.986 Btu /lb mole - °R., and T_r is in °R.

Note that the ideal gas state enthalpies are given in units of Btu /lb; therefore, the component molecular weight must be used for converting either the ideal gas state enthalpy or the effect of pressure on the enthalpy before substituting into Equation 3.

Undefined mixtures—Very often the enthalpy of petroleum fractions or of the C_7 + in natural systems must be calculated. For this case average or pseudo properties are used for the undefined mixture. Generally the specific gravity, molecular weight and ASTM or true boiling point distillation will be known.

Figs. 16-18 through 16-20, Section 16 relate ASTM distillation, molecular weight, specific gravity, critical temrature, and critical pressure of petroleum fractions. Once the last four quantities are known, the ideal gas state enthalpy for the petroleum fraction can be obtained from Fig. 17-12.

An acentric factor can be estimated by using Fig. 16-21, Section 16. Then the effect of pressure on enthalpy for the petroleum fraction is found using the figures for $[(H^0 - H)/RT_{.}]^{(0)}$ and $[(H^0 - H)/RT_{.}]^{(2)}$ and Equation 4 exactly as was done for a pure component. The enthalpy of the undefined mixture is calculated as shown by Equation 3.

Defined mixtures—The enthalpy of a mixture for which a component analysis is known can be calculated by combining pure component data and constants. The mixture ideal gas state enthalpy is calculated by a mole fraction average of the pure component ideal gas state enthalpies.

$$H_{m}^{0} = \Sigma x_{i} H_{i}^{0}, \qquad (5)$$

where x_i is the mole fraction of the ith component.

 \sim Equation 5 assumes no heat of mixing in the ideal $\not \perp$ state because the molecules are at infinite attenuation and should not affect one another.

Pseudocritical temperatures and pressures can be calculated for the mixture using Kay's rule.⁴

$$T_{em} = \sum_{i} x_i T_{ei} \text{ and } P_{em} = \sum_{i} x_i P_{ei}$$
 (6)

The mixture acentric factor is also calculated as a mole fraction average of pure component acentric factors.

$$\omega_{\rm m} = \sum \mathbf{x}_i \; \omega_i \tag{7}$$

Other methods for obtaining pseudocriticals are more sophisticated than Kay's rule and in many cases give better results. These sophisticated methods usually involve complex equations and/or interaction parameters. For desk calculations Kay's rule is very convenient, while for computer calculations a more complex method can be used.

The pseudocriticals are used to calculate pseudo-

reduced temperature and pressure in order to obtain values of $[H^n - H)/RT_c]^{(n)}$ and $[H^n - H)/RT_c]^{(n)}$. The mixture acentric factor and pseudocritical temperature are then used to calculate $(H^n - H)_m$, the effect of pressure on enthalpy for the mixture.

$$(H^{n} - H)_{n} = RT_{rm} | [(H^{n} - H)/RT_{c}]^{(0)} + c_{m} [(H^{n} - H)/RT_{c}]^{(1)} |$$
(8)

The value of the mixture enthalpy at the desired temperature and pressure is found by substituting H_{m}^{0} and $(H^{0} - H)_{m}$ for H^{0} and $(H^{0} - H)$ in Equation 3.

The enthalpy of a two-phase mixture should be calculated by first performing a flash calculation in order to obtain the moles and composition of each phase at the desired conditions. Then the enthalpy of each phase should be calculated as described above. The molar enthalpy of the total mixture is calculated by combining the gas and liquid phase enthalpies on a mole basis.

Total enthalpy charts. Total enthalpy charts are included in Figs. 17-20 through 17-28 in order to offer a rapid means of calculating heat balances essentially on the same basis as outlined in the preceding sections of the Enthalpy Correlation. They may be used in lieu of the detailed component-wise calculations for all vapor, all liquid, or vapor-liquid mixture enthalpies. The charts cover the range of composition, temperature and pressure encountered in most natural gas systems from wellhead separators through liquified natural gas systems.

The total enthalpy charts were developed in a computer program by synthesizing binary mixtures of normal paraffin hydrocarbons using the pure component lighter and heavier than the molecular weight for which enthalpies are to be calculated. Molecular weights were calculated in increments of 2 from 16 to 30 MW and in increments of 5 from 30 MW through 160 MW.

The ideal gas state enthalpy for each component of the binary mixture was calculated and then the mixture ideal enthalpy calculated. The ideal gas state enthalpy for methane, ethane, and propane is a curve fit of the data in Fig. 17-11A. For butane and heavier, a fourth order polynomial was used with the same coefficients as listed in the API Data Book, Table A1.2 page 7-9. The fifth coefficient, "E", was dropped to convert to 0°R, 0 psia enthalpy datum.

The ideal gas state enthalpy was then corrected for the effect of pressure on enthalpy of the simple and real fluid using interpolation of tabular data used to derive Figs. 17-13 and 17-14. Pressure calculations were made from reduced pressures of 0.2 to 3000 psia in increments of 100 psi. Temperatures used ranged from -300° F. minimum or $T_{\rm R} = 0.35$ minimum to 600°F. in increments of 50°F.

Caution. Inevitably some mixtures encountered in the natural gas industry lie inside the phase envelopes of Figs. 17-13 and 17-14. Rather than extrapolate into the phase envelopes of Figs. 17-13 and 17-14 for enthalpy pressure corrections, the total enthalpies were first generated, plotted, and then extrapolated.

Extensions of vapor enthalpies to lower tempera-(Text cont'd, p. 17-18)

Rev. 1974

CALCULATION OF TEMPERATURE DOWNSTREAM

THE BLOWDOWN VALVES

								T	TAL I		TRIAL II
COMP	MW	I DEAI ENTHAL	L GAS STATE PIES AT 41°F	FRACTION	CRITICAL	CRITICAL PRES,	ACIATRIC		STATE ENTHALPIES - 100 ⁰ F		STATE ENTHALPIE: - 90 ⁰ F
		BTU/LA	BTU/LB-MOL		TEMP, R	P51A	PACTOR	BTU/LB	BTU/LB-MOL		
N2 CO2 C1 C2 C3 iC4 C4 iC5 C5 C6	28 44 16 30.1 44.1 58.1 72.15 72.15 96.2	124 B4 250 157 130 120 130 120 127	3473.2 3696.8 4010.0 4721.0 5733.0 6974.4 7555.6 8658.0 9163.1	0.92 0.24 94.81 3.85 0.06 0.01 0.02 0.02 0.02 0.05	227.6 547.6 343.1 549.8 665.7 734.7 765.3 828.8 845.4 912.0	493 1071 667.8 707.8 616.3 529.1 550.7 490.4 488.6 470	0,040 0.225 0.0104 0.0986 0.1524 0.1848 0.2010 0.2223 0.2539 0.290	88 56 175 102 80 70 80 70 70 78	2464.9 2464.6 2807.0 3067.1 3528.0 4068.4 4649.6 5050.5 5627.6	84 58 102 110 85 75 85 75 85 75 85	2352 2552.6 2919.3 307.7 3748.5 4357.5 4938.5 5411.3 6132.8
Press Pseude Pseude Reduce Reduce Acent: (H ^O ~! (H ^O ~! (H ^O ~! (H ^O ~! (H ^O ~! (H ^O ~! H ^M H ^M	ocritical ed temp ed pres ric facto: H)/RTC + H)/RTC + }/RTC = }m BTU, BTU,	temp, ^O R pres, PS) r (H ^O -H)/RTG /1b mol /1b mol /1b mol		RTC	· ·	41 2320 351.3 668.5 1.426 3.47 0.015 1.85 0.34 1.85 1291 4033.7 2743		3 6 28 27	00 29,0 51,1 68,5 1,02 0,04 0,015 0,042 29,30 13,6 84,3 41,3	235	0 ⁰ 9.0 1.3 8.5 1.05 0.04 0.015 0.038 - 0.038 6.51 8.9 2.4 9.4

10.02.01 JIN

APPENDIX 11

FIRE PROTECTION - LIQUID VAPOURIZATION

- GAS EXPANSION

r			
`	CALCUL	ATION_NOTES	
•			
CLIENT: E	.A.N. PROJECT: TCP-2 Extension	SHEET 1	OF
DISCIPLIN		JIN/asb	
^ر بالمسید (_{ما} بین و بانستان میں ایر مطالب کا مسال	Fire protection - Liquid vapourization		
·			-
	-		
	Formula used (ref. API RP 520)		
	Total heat absorption from fire		
	$Q = 21000 F \times A^{0.82}$		
	Q = total heat absorption BTU/hr		
	A = total wetted area sqft		
	F = environment factor, for bare vessel F = 1.0	L.	
	r = environment factor, for bare vesser r = 1.0	I	
1.	Slug catcher CV 210 (PSV V 210 1/2)		
	·		
	Max liquid level (which corresponds to LSHH) is	; at	
• •	1650 mm. Vessel size is 2400 ID x 9140 T/T.		
	Wetted area $A = \Pi \times ID \times L + \Pi \times ID^2 \frac{1650}{2400} =$	$= 60 \text{ m}^2$	
		632 sqft	
		_	
•	$Q = 21000 \times 632^{0.82} = 4.157 \ 261 \ BTU/hr$		
-	Condensate latent heat is 72 kcal/kg		
	condensate fatene neat 15 /2 kour, kg		
	Weight flow rate $\frac{4157\ 261\ x\ 0.252}{72}$ = 14550 kg/hr		
	weight flow rate $\frac{72}{72} = 14550 \text{ kg/lif}$	-	
•			
	(0.489 MSCM/L))	
	x		
	•		

۰.

(· .		CALCULATION NOTES
CLI	IENT:	E.A.N. PROJECT: TCP-2 Extension SHEET 2 OF 8
DIS	SCIPLIN	NE: Process ENGINEER: JIN REF.: JIN/asb
SUE	BJECT:	Fire protection - Liquid vapourization
	2.	<u>Condensate / Methanolated water separator - ODIN CV 204</u> (PSV V 204 1/2)
		Vessel size is 1000 ID x 4000 T/T. Max liquid height is equal to 750 mm.
		Wetted area $A = (\Pi \times 1.0 \times 4.0 + \Pi \times 1.0^2) \ 0.75 = 11.8 \ m^2$
		(130 sqft)
		$Q = 21000 \times 130^{0.82} = 1136718 \text{ BTU/hr}$
		Weight flow rate $\frac{1136718 \times 0.252}{72} = 3978 \text{ kg/hr}$
		(0.134 MSCM/D)
	3.	Condensate / Methanolated water separator NEF CV 213 (PSV V 213 1/2)
		The vessel is identical to CV 204
		Flow rate will therefore be 3978 kg/hr
		(0.134 MSCM/D)
	4.	Methanolated water flash drum - CV 220
		Vessel size is 900 ID x 2900 T/T. Max liquid height is equal to 550 mm.

Wetted area $A = (\pi \times 0.9 \times 2.9 + \pi \times 0.9^2) \frac{0.55}{0.9} = 6.6 \text{ m}^2$ (71 sqft)

CLIENT: E	ταN	- PROJECT:	TCP-2 Ex	tension	SHEET	3	OF	8
	E: Process	ENGINEER:		· · · · · · · · · · · · · · · · · · ·	JIN/asb			Ť
	Fire protection		· · · · · · · · · · · · · · · · · · ·			- <u>.</u>		·
					······		· · · · ·	·
	Q = 21	$1000 \times 71^{0.82}$	= 69261	BTU/hr				
	Weight flow rat	$= \frac{69261 \times 0.}{72}$	$\frac{252}{252} = 24$	24 kg/hr				
			(0.0	80 MSCM/D)				
. 5.	<u>Pig receiver -</u>	ODIN CM 201	(PSV M 2	.01.1)				
· •		•		_ /_				
$\underline{2}$	Size of equipme	ent is 550 ID	x 4000	T/T.				
	Wetted area 1	n - 11 - 0.55	~ / ~ <u>1</u>	$= 3 \Lambda \epsilon m^2 ($	37 7 eaft	⊢ \		
	(assuming pig :				97.2 .DdT.	-	-	
	(appending big .							
	$Q = 21000 \times (3)^{-1}$	$(7.2)^{0.82} = 40$	7441 BTU	J/hr				
	Weight flow rat	te $\frac{407441 \times 0}{72}$	$\frac{1}{252} = 1$	425 kg/hr				
		12		050 MSCM/D				
`								
							•	

CLIENT: E.A.N.	PROJECT: TCP-2 Extensio	n	SHEET	4	OF	8
DISCIPLINE: Process	ENGINEER: JIN	REF.:	JIN/asb			•
SUBJECT: Fire protection -	Liquid vapourization	<u></u>				

6. <u>Slug catcher CV IA (PSV VIA 6/7)</u>

This is an existing vessel. In case of fire the vapour will release to the HP relief system. The relief flowrate is identical to

0.455 MSCM/D

Summary - Liquid vapourization

		Wetted _p area	Flow	wrate	
Vess	sei	m ²	KG/hr	MSCM/D	Flare system
				·	· · ·
cv :	210	60 .0	14550	0.489	Low temperature
CV	1A	· –	-	0.455	High pressure
cv :	204	11.8	3978	0.134	Low pressure
cv :	213	11.8	3978	0.134	Low pressure
cv :	220	6.6	2424	0.080	Low pressure
2 CM	201	3.5	1425	0.050	Low temperature
د					•

CLIENT:	E.A.Ň.	PROJECT: TCP-2 Ex	tension	SHEET	5	OF	8
DISCIPLINE:	Process	ENGINEER: JIN	REF.:				
SUBJECT:	Fire protection -	- Gas expansion					

Relief rates from thermal gas expansion due to fire

The relief rates from gas expansion due to fire has been calculated according to API RP 520 appendix C paragraph C 3 for the calculation without insulation and section 6 paragraph 6.3.1 for the insulation effect on the above calculations.

The discharge area for safety relief valves on gas containing vessels exposed to open fires, can be determined using the formula

$$\triangle \qquad A = \frac{F^1 A_3}{\sqrt{P_1}}$$

A = effective discharge area of the valve in sqin where . . essure in psia

$$\triangle$$

/1\

A₃ = exposed surface area of vessel plus surrounding pipes in sqft

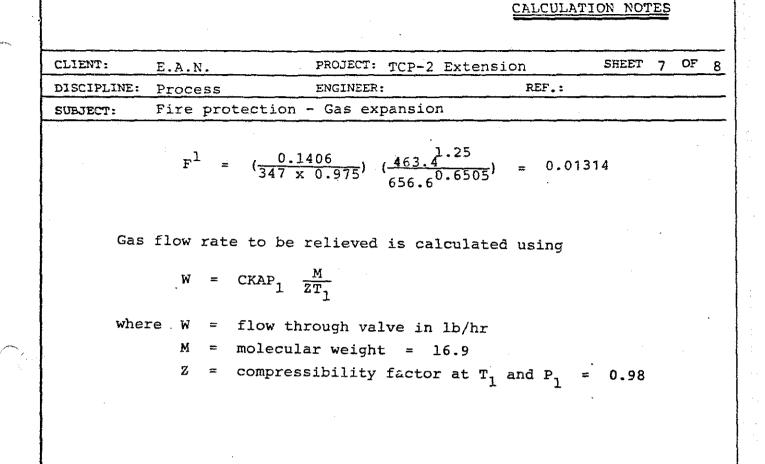
 $F^{1} =$ an operating factor determined by

$$F^{1} = \left(\frac{0.1406}{C \cdot K}\right) \left(\frac{\Delta T^{1.25}}{T_{1}^{0.6506}}\right)$$

 $C = 520 k \left(\frac{2}{k+1}\right) \frac{k+1}{k-1}$

where

= $\frac{CP}{CV}$ = ratio of specific heats k


K = coefficient of discharge = 0.975

 $T_1 = gas$ temperature in degrees F +460 at the upstream pressure.

 $T_1 = (\frac{P_1}{P_n}) T_n$

It is determined from the relationship

			ÇA	LCULATIC	N NOT	res		
CLIENT: E.A.N	PROJECT:	TCP-2	Extension		SHEET	6	OF	
DISCIPLINE: Process	ENGINEER:			REF.:				
SUBJECT: Fire protection	- Gas exp	ansion						
		_						
11	operating	gas te	mperature	in degr	ees F	+4	60	
P = normal	operating	pressu	re in psi	a				
$\Delta T = T_w - T_1$	= differe and the	ence be e tempe	tween wal rature of	l temper gas at	ature P ₁	ł		
T = vessel w	wall tempe	erature	in degre	es F +46	0			
As the vessel and the must be taken into ac wall temperature.								
From API RP 520 page	15:							
The outside temper fire exposure will	ature of t reach an	he ins equili	ulation ja brium temp	acket in perature	case of 10	of 660	o _{F.}	
From API RP 520 page	11:				·			
In practice it is provide a temperat						ect	eđ. ·	τ
From this is conclude wall is:	d that the	max to	emperature	e of the	vesse	el		
$T_w = (1660 - 1000)$	$^{\circ}F = 660^{\circ}F$	-						
		· ·						
<u>Calculation of F¹</u>								
$T_{\rm w} = 660^{\rm O}{\rm F} + 460^{\rm O}{\rm F}$	0 - cool	0_						
*1								
$T_n = 5^{\circ}C = 41^{\circ}I$			2					
$P_n = 149 \text{ bara} =$	2161 psia	a	-		-			
P ₁ = 177.5 bara x	x 1.1 = :	2832 ps	ia	·				
$T_1 = \frac{2832}{2161} \times 501$	1 = 656.(6 ⁰ r =	196.6 ⁰ F					
$\Delta T = T_{w} - T_{l} =$	1120 - 650	5.6 =	463.4					
$k = \frac{CP}{CV} = 1.30$	at standa	ard con	ditions					
$C = 520\sqrt{1.3} \left(\frac{2}{2}\right)$	2.3							

$$\frac{\text{CALCULATION NOTES}}{\text{CLLENT: E.A.N. PROJECT: TCP-2 Extension SHEP 8 OF 8}}$$

$$\frac{\text{DISCIPLINE: Process ENGINEER: JIN REF.:}{\text{SUBJECT: Fire protection - Gas Expansion}}$$

$$\frac{\text{Calculation for Scrubber CV 211}}{\text{The total exposed area used in the below calculations is based upon the area of the vessel itself plus surrounding pipelines. The area of the surrounding pipelines is defined as the area of the pipes to/from CV 211 within Module 50. Area of vessel: 8.2 m2 Area of pipes: 42.5 m2 Total area $\lambda_3 = 50.7 \text{ m}^2 = 545.4 \text{ sqft}$

$$\frac{\text{A} = 0.01314 \text{ S45.4}}{\sqrt{2832}} = 0.1346 \text{ in}^2 \frac{16.9}{0.98 \times 656.6} = 20903 \text{ lb/hr} \frac{9462 \text{ kg/hr}}{(0.319 \text{ MSCH/D})}$$

$$\frac{\text{Calculation for Scrubber CV 201}}{\text{Area of vessel: 11.9 m2}}$$

$$Area of vessel: 11.9 m2 Area of pipes: 92.3 m2 Total area $\lambda_3 = 104.2 \text{ m}^2 = 1122 \text{ sqft}$

$$\frac{\text{A} = 0.01304 \times 1122}{\sqrt{2832}} = 0.277 \frac{16.9}{0.98 \times 656.6} = 43003 \text{ lb/hr} \frac{19506 \text{ kg/hr}}{(0.636 \text{ MSCM/D})}$$$$$$

- 1911年の外間後、「「「「1911」」「1911年の新聞の名と、「1911年の日本」」「1911年の「1911年の日本」」「1911年の日本」「1911年の「1911年の「1911年の」」「1911年の「1911年の」」「1911年の1911年の「1911年の日本」

•

APPENDIX 12

BACK PRESSURE CALCULATIONS LP VENT SYSTEM TO GLYCOL SURGE DRUMS CV 17

CLIENT:	E.A.N.	PROJECT:	TCP-2	Extension	SHEET	1	OF	2
DISCIPLINE:	Process	ENGINEER:	JIN	REF.:				
SUBJECT:	Back pressure	calculations	s CV 17	7	:			

An important leakage on the tube side of the condensate heaters, may reduce the TEG circulation flow to zero because the tube side pressure is higher than the shell side pressure.

In this case the flow of condensate, gas and methanolated water will pass through on the shell side. The maximum flow rate corresponds to 3382 kg/hr which is the figure given on Process Flowsheet 88 00 00 5101. The released gas will be evacuated through the existing 2" breather line to the LP vent system.

The back pressure is calculated using the Darcy formula: (Ref. is made to Appendix 7)

$$\frac{\Delta P}{L} = \frac{4 \times f \times 0.000336 W^2}{(ID)^5 \times \rho}$$

W = 971 kg/hr (Ref. Technical Specifications, Chapter 3.6.2.4.5)
Friction factor "f" is determined from Reynolds number:

 $Re = \frac{6.32 \times W}{ID \times} = \frac{6.32 \times 2141}{2.067 \times 0.013} = 503485$

$$f = \frac{0.04}{\text{Re}^{0.172}} = 0.00418$$

				CALCULA	CALCULATION NOTES		
CLIENT:	E.A.N.	PROJECT:	TCP-2	Extension	SHEET	2 _{OF} 2	
DISCIPLINE:		ENGINEER:		REF.:			
SUBJECT:	Back pressure			· · · · · · · · · · · · · · · · · · ·			
				.			
(A P,	$\binom{1}{00} = \frac{4 \times 0}{100}$.00418 x 0.00	0336 x	$(2141)^2 = 10$	0.3 psi/l	00 ft	
	00 /	(2.067) ⁵ x 0.	0665	÷			
ti - t-	-]]	09 43 #					
TOL	al length 30 m	n = 98.43 I	τ				
	30.2 - 0.00		4 -				
ΔP	$= 10.3 \times 0.98$	343 = 10.1	psi =	0.7 bar			
	Pack	pressure:	2	0			
		are drop:					
		pressure:		.7 bara .7 bara	-		
		-					
		design press	ure: 5	.V/ Dara			
		<u>.</u>	· .				
The	above calcula	ations show t	hat the	e CV 17 design	pressure		
will	l not be reach	ned.					
۰							
-							

APPENDIX 13

DATA SHEETS FOR SAFETY RELIEF VALVES

S sofresid norge a.s

FUNCTION / ITEM : SAFETY VALVES		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
CLIENT ELF AQUITAINE NORG	E A/S			
PROJECT TCP 2 EXTENSION				
ITEN	PSV V204.1	PSV V2	.04.2	PSV V213.11
REF. P & ID	8800 11 5032	88001	5032	8800 11 503
-NATURE OF FLUID	6	e)	6
PLANGE RATING / PACING INLET	300 RF	300	RF	300 RF ,
PLANGE RATING / FACING OUTLET	150 RF	15) PF	· 150 2F
CASE FOR RELIEF	FIRE	Ŧŀ	RE	FIRE
SET PRESSURE BARA	25	2	5	25
OVERPRESSURE PERMISSIBLE	10	10)	10
REQUIRED CAPACITY KG/HR	3978	39	78	3978
RELIEVING TEMPERATURE	149	144	3	149
MOLECULAR WEIGHT (OF VAPOULIZED LIQUID)	17.7	17.	7	17.7
COMPRESSIBILITY FACTOR	0.98	0.9	8	0.98
VISCOSITY (AT OPERATING CONDITIONS) CP				
SP GR LIQUID (AT OPERATING CONDITIONS)				
Cp / Cv RATIO	1.3	1.3	5	1.3
BACK PRESSURE BARA (HAX)	· 2	2.		2
			·····	
		ļ		Į
	•	<u> </u>		ļ
		<u> </u>	•	
		<u> </u>		L
· ·				
· · · · ·			•	
HOTES	<u>.</u>	<u>t</u>		<u> </u>
				• • •
3 REVISED AS NOTED		RIL 18		
2 FOR APPROVAL	12.1611	NIL 10	87	
REVISION	DATE	BT	APP	APP BY CLIENT
FILE ND S.N.NO.	•.	CLIENT	-	
1		ł		

SHT 35/38

PROCESS SPECIFICATION

PROCESS SPECIFICATION

S sofresid norge a.s

	ION/ ITEM : SAFETY VALVES		<u></u>	·
CLIEN		SE A/S		
PROJE	CT TCP 2 EXTENSION			
ITEM	· · · · · · · · · · · · · · · · · · ·	PSV V213.2	PSV V220.1	PSV V220.2
RET. 2	· E ID	8800115032	8800 105033	880010503
NATUR	E OF FLUID	6	6	6
PLANG	E RATING / FACING INLET	300 RF	150 RF	150 RF
PLANG	E RATING / FACING OUTLET	150 RF 3	150 R F	ISORF
CASE	FOR RELIEF	FIRE	FIRE	FIRE
SET P	RESSURE BARA	25	16.2	16.2
OVERP	RESSURE PERMISSIBLE	10	10	10
REQUI	RED CAPACITY KG/BR	3978	2424	2424
RELIE	WING TEMPERATURE	149	246	246
MOLEC	WAR WEIGHT (OF VAPOURIZED-LIQUID)	F.FI	17.7	17.7
COMPR	ESSIBILITY FACTOR	0.98	1.0	1,0
VISCO	SITY (AT OPERATING CONDITIONS) c Po			
SP GR	LIQUID (AT OPERATING CONDITIONS)	-		
c _p /	Cy RATIO	1.3	1.3	1.3
BACK	PRESSURE BARA (HAX)	2	2	2
	-			
·.				
	-	•		
NOTES		I	I	L
··· · · · · · · · · · · · · · · · · ·	•			
<u></u>				• •
- 3	REVISED AS NOTED	15/9 15	NI JIN	
2	FOR APPROVAL	12/6/5	IJIN 87	<u></u>
REV NO	REVISION	DATE		APP BY CLIENT .
FILE NO	S.N. ND.	······	CLIENT	
				۰ ۲۰۰۰
<u></u>	<u></u>	e of see Id	norge a.s	

S sofresid norge a.s

PROCESS SPECIFICATION

FUNCTION / ITEM : SAFETY VALVES			
CLIENT ELF ADUITAINE NOR PROJECT TCP 2 EXTENSION	x ~\s		
			1
	PSV P 223 A.1	PSV P 223 8.	1
1057. 2 4 ID	8800 09 5031	880009503	0
-NATURE OF FLUID	METHANOL	METHANOL	
FLANGE RATING / FACING INLET	1500 RTJ	1500 RTJ	
FLANSE RATING / FACING OUTLET	150 RF	150.RF	
CASE FOR RELIEF	BLOCKED LIN	E BLOCKED LIN	Æ
SET PRESSURE BARA	177.5	177.5	
OVERPRESSURE PERMISSIBLE	0	0	1
REQUIRED CAPACITY KG/HR	0,005 HIH	R 0.005 H3 H	× I
RELIEVING TEMPERATURE °C	21	21	
HOLECULAR WEIGHT		1	
COMPRESSIBILITY FACTOR			
VISCOSITY (AT OPERATING CONDITIONS) CP	0.7	0.7	
SP GR LIQUID (AT OPERATING CONDITIONS)	0.8	0.8	· · ·
Cp / Cy RATIO		1	
BACK FRESSURE BARA	~0	~D	
		1	-
		1	
		+	
	<u></u>		1
NOTES			
	12/6/	BI JIN 87	
2 FOR APPROVAL REVISION	DAT		APP BY CLIENT
FILE NO S B NO.		CLIENT:	
	sofresk	norge a.s	

SHT 38 3

			SHT 37 38
Sofresid norge a	a. S	PROCESS SPECI	ICATION
FUNCTION/ITEM : SAFETY VALVES			
CLIENT ELF AQUITAINE NOR	GE 4/s		
PROJECT TCP 2 EXTENSION		·	
<u>A</u>	PSVP225A.1	PSV P 225 B1	
NIT. ? & ID	8800105033	8800105033	
-NATURE OF PLOID	INHIBITOR	INHIBITOR	-
FLANGE RATING / FACING INLET	150 RF	150 RF	
PLANSE RATING / FACING OUTLET	150 RF	150 RF	
CASE FOR RELIEF	BLOCKED LINE	BLOCKED LINE	•
SET PRESSURE BARA	16	16	
OVERPRESSURE PERMISSIBLE	0	0	
REQUIRED CAPACITY . KG/HR	0.002 M/HR	0.002 m/HR	
RELIEVING TEMPERATURE	21	21	
MOLECULAR WEIGET			
COMPRESSIBILITY FACTOR			
VISCOSITY (AT OPERATING CONDITIONS) CP	0.6	0.6	
SP GR LIQUID (AT OPERATING CONDITIONS)	0.8	0.8	
Cp / Cy RATIO			
BACK PRESSURE BARA	1.5	1.5	
	····		
<u></u>	1		
		· · · · ·	
		•	
	<u></u>	<u> </u>	
NOTES			
•		,	•
			······································
3 REVISED AS NOTED 2 FOR APPROVAL	15418	UN 87	-
REVIND	DATE	EY APP	APP BY CLIENT
ILE NO. S.N NO.		CLIENT:	